NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

VHDL MODELING AND SIMULATION FOR A DIGITAL
TARGET IMAGING ARCHITECTURE FOR MULTIPLE
LARGE TARGETS GENERATION

by
Héakan Bergon
September 2002
Thesis Advisor: Douglas J. Fouts
Co-Advisors: Man-Tak Shing

Phillip E. Pace

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 2002 Master’s Thesis

4. TITLE AND SUBTITLE: VHDL Modeling and Simulation for a Digital Target | 5. FUNDING NUMBERS
Imaging Architecture for Multiple Large Targets Generation

6. AUTHOR(S) Hékan Bergon

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Naval Research Laboratory AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 words)

The subject of this thesis is to model and verify the correctness of the architecture of the Digital Image
Synthesizer (DIS). The DIS, a system-on-a-chip, is especially useful as a counter-targeting repeater. It synthesizes
the characteristic echo signature of a pre-selected target. The VHDL description of the DIS architecture was
exported from Tanner S-Edit, modified, and simulated. Different software oriented verification approaches were
researched and a White-box approach to functional verification was adopted. An algorithm based on the hardware
functionality was developed to compare expected and simulated results. Initially, the architecture of one Range
Bin Modulator was exported. Modifications to the VHDL source code included modeling of the behavior of the N-
FET and P-FET transistors as well as Ground and Vdd (the voltages connected to the drains of the FETs). It also
included renaming of entities to comply with VHDL naming conventions. Simulation results were compared to
manual calculations and Matlab programs to verify the architecture. The procedure was repeated for the
architecture of an Eight-Range Bin Modulator with equally successful results. VHDL was then used to create a
super class of a 32-Range Bin Modulator. Test vectors developed in Matlab were used to yet again verify correct
functionality.

14. SUBJECT TERMS 15. NUMBER OF
Digital Image Synthesizer, Counter-Targeting Repeater, Range Bin Modulator, VHDL, | PAGES
White-box, Matlab 194
16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

11

Approved for public release; distribution is unlimited
VHDL MODELING AND SIMULATION FOR A DIGITAL TARGET IMAGING
ARCHITECTURE FOR MULTIPLE LARGE TARGETS GENERATION
Hakan Bergon

Major, Swedish Army
BSSE, Swedish National Defense College, 2000

Submitted in partial fulfillment of the
requirements for the degrees of
MASTER OF SCIENCE IN SYSTEMS ENGINEERING
AND

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 2002
Author: Hakan P.I. Bergén
Approved by: Douglas J. Fouts, Thesis Advisor

Man-Tak Shing, Co-Advisor
Phillip E. Pace, Co-Advisor
Dan C. Boger, Chairman

Information Sciences Department

Luqi, Chairman
Software Engineering Program

111

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

The subject of this thesis is to model and verify the correctness of the architecture
of the Digital Image Synthesizer (DIS). The DIS, a system-on-a-chip, is especially useful
as a counter-targeting repeater. It synthesizes the characteristic echo signature of a pre-
selected target. The VHDL description of the DIS architecture was exported from Tanner
S-Edit, modified, and simulated. Different software oriented verification approaches were
researched and a White-box approach to functional verification was adopted. An
algorithm based on the hardware functionality was developed to compare expected and
simulated results. Initially, the architecture of one Range Bin Modulator was exported.
Modifications to the VHDL source code included modeling of the behavior of the N-FET
and P-FET transistors as well as Ground and Vdd (the voltages connected to the drains of
the FETs). It also included renaming of entities to comply with VHDL naming
conventions. Simulation results were compared to manual calculations and Matlab
programs to verify the architecture. The procedure was repeated for the architecture of an
Eight-Range Bin Modulator with equally successful results. VHDL was then used to
create a super class of a 32-Range Bin Modulator. Test vectors developed in Matlab were

used to yet again verify correct functionality.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

I. INTRODUCTION ..ccuuiiiuinnnensnnnssnecssessssesssnsssssssssssssesssssssassssassssssssssssassssasssssssassssasssss 1
A. DIGITAL IMAGE SYNTHESIZERS.......ciiiinneinennnensensssecssecsssnesanns 1

1. Background..........ceeevuerinennennnne 1

2. Functionality of the Digital Image Synthesizer 2

B. PRINCIPAL CONTRIBUTIONS.....cccvitnieniisninsanisssncssssssssssssssssssssssssssosases 5

C. THESIS OUTLINE ...ccuuiiiiiiiiitinitictnineissenssicssesssisssesssssssssssssssssesssssssseses 6

IL. CAPABILITIES OF VHDLuuuiiiiiniiniinnninsiinsnncsnssssiessssssssssssssssssssssssssssssssssssssses 9
A. INTRODUCTION ..cuuiiiiiirninnensnncssiessecssessssssssesssssssssssssssssesssssssssssssssssasssss 9

1. HiStory of VHDLuuiiiininniinnniennensnennsnensecsssecssnssssesssnesssesssssssasses 9

2. Digital Design Using HDLccoceivvvrinivencsssnncssencssnescssnnscsssnsssasssnes 9

3. LOGIiC SYNERESIS «.ccevueeerueninensnenssnnnsenssnensnnessnecssesssnesssessssesssesssassssaesnes 11

B. OVERVIEW OF VHDL CAPABILITIES AND ACTIVE VHDL........... 12

1. VHDL as a Programming Language...........ccocceevercsuensneessneesansssnenans 12

2. ACtiVe HDL ...uuconniiniiiniiinicninneinneissenssecsssessssssssesssssssessssssssssssasses 13

III. SOFTWARE VERIFICATION METHODS.......ccceecienviinninsnnnsninssessssncssesssssesanes 19
A. TESTING AND VERIFICATIONiiniineiseinsnninnesssecsnnsssesssessssecsnnes 19

1. RECONVEIZENCE c..ucuueriineiiisnniiisnniissnrnissnnicsssnisssseessssnesssssesssssssssssssssenes 19

B. FORMAL VERIFICATIONcuiiiiiteinninsnnisnnsssecsssecssnssssessssssssesssasssassses 21

1. The Use 0f LOGIC c..ucevueerernrueninensnensnnnnsnensenssnessnssssessansssnesssesssnssssenes 21

2. Binary Decision Diagrams and Computational Tree Logic 24

a. BDDuuunuiniiininniininnnisnniissississssssstssssssssssssssssssssssssassenns 24

b. O) TN 26

3. Equivalence ChecKing........ccueeevveeisericsnricsnncssnnncssnnncsssnncsssnccsssnenes 26

4. Model CheCKing......ccovueiervuricssnnicssnncsssnncssnncssssssssssssssssssssssssssssssssssses 27

5. Theorem Proving........cceeicinnneiecsnsssniccsssssecsssssssssssssssssssssssssssssssss 28

6. Functional Verification........................ 29

a. Black-Box VerifiCAtioN.......ccoeeeeeeoosssserscsssssnsicsssssssssssssssens 30

b. White-BoX VerifiCAtiONueeeeoseverossuescsssesosssnsssssssssasssssanes 30

c. GTEY-BOX Ve ifiCALION auuueeneaneeeovesrnniossssansiesssssesissssssssssssssnees 31

C. SIMULATION . uuciiiiitiiisnecsnnssnecssecsssecssessssncssessssssssssssssssassssasssssssssssssasssasasses 31

D. CHOSEN METHODOLOGY ...uucoviiiniinninsnenssnicsnisssnsssesssssssssssssssssssssssesass 33

IV. VERIFICATION OF HARDWARE DESIGNS......ccutinvinninsenssrecsnnssaccssecsnecsanes 35
A. VHDL CODE EXTRACTION.....ccoiiiiirinsuiinnncsninsnisssnssssssssesssssssnsssessans 35

1. Extraction Guidelinescoueivveeineessnecsenssnessnecssnecsnenssnecsencsnecaees 35

B. VHDL CODE MODIFICATIONccooiiiviiieisnnssnecssencssnssssssssncsssssssnsssassans 36

1. Naming Conventionsceeeeesserccsssrcsssnesnns 36

2. Entity Declarationccoeeeiecnissnnnccsssnsicssssnssscssssssesssssssssssssssssssans 37

3. BeRaVIoruiiieieiiitiiiiintinntecneneinnennesaeseessessssesaesssassssessaes 37

C. CREATION OF MODELSuuiiiitiiniisninsninsnicssesssssssessssssssssssesssssssens 37

1. L 173 o () PPN 38

2. Subsequent Models........ccccvereecccnnrecscnnnes 44

D. VERIFICATION OF SINGLE RANGE BIN MODULATOR................. 45

1. Underlying Mathematicscccevvverrccsccnnicssssnnrecssssnsncssssssessssssssssans 45

E LAYOUT acoiiiiiiniinninnninsnecnsecsnssssesssassssessssssssssssasssssssssssssssssassssssssssssasssss 47

F CONTROL SIGNALS ..ucotiiiicttcticntnsnessnesssecsssessssssssssssssssssssssssssssssssssses 47

G DRIVER INPUT METHODOLOGY AND EXPECTED OUTPUT 49

H TEST ALGORITHMccouiiniiiniinninsnennnicsnessnnsssecsssssssssssessssssssssssssssssessens 49

I TEST AND RESULTS .ccooviiniintinniensnensnensnensnesssesssnssssesssassssessssssssssssasssses 51

J VERIFICATION OF 8 RANGE-BIN MODULATOR.........ccceuveruurcuneene 52

1. Underlying Mathematicsc.cceeeeerueeseecsuensncnnne 52

2. LAYOUL..cciiireniiiiiintiicissnniicsssnnnicsssssssesssans 53

3. Additional Control Signals........... 55

4 Driver Input and Test Algorithmccocuevneivsueinennsnenseccsnennnn 55

a. TSt AIGOFIIRMN a..cnuannnnennnnnenonnnenonnrncsnensssressnsrossssrosssssssssssens 55

S. Tests and ReESULLS ...cuueeeiineeeiieniisnecssnencsseencssneessnecsssneessneesssseessaeenes 60

a. L6 L1 I . 60

b. e (1. 7 - S 61

V. VERIFICATION OF 32 RANGE-BIN MODULATOR......cccccerueerursecsarcecsaecanee 63
A. CREATION OF 32 RANGE-BIN MODULATOR.......ccccevveecruerreccsvecsanee 63

1. Underlying Mathematicsceeveeevuensnensuecsnecsnenns 63

2. | I0E: 1) | 63

3. Additional Control Signals............. 65

4. Driver Input and Test Algorithmcceeeveinveeiseciseecsennsnecsnencnns 65

B. IMPLEMENTATION OF TEST CASES......cuininrninensnenseessenssecsnenne 65

C. SIMULATION AND VERIFICATION.uuuiiiinsennsnensnenssnecssessecsssessnes 66

1. Programming of Vector 32Aiiivvniisseeiniencssnncssseecssseecssnens 66

2. Result of VECtOr 32Aioeeieininennennnenneseesnesnssecssessncssssssesssenns 67

3. Programming of Vector 32Biiieivveniicsisnnncssssnnnecssssnsecsssnssecsans 68

4. Result of Vector 32Biiieeiineinennennennesnennnssesssessncssnessessneans 70

VI. SUMMARY, CONCLUSION AND RECOMMENDATIONccceceererrruecsunccnns 73
A. SUMMARY AND CONCLUSION...uutinuicrensnecsancsancsaessancsssesssassssssssasssses 73

B. RECOMMENDATIONuuiiiiiiiinniisnennnncsnesssnnsssessssnssssssssssssessssssssssssasssss 73
APPENDIX A. VHDL IMPLEMENTATION TUTORIALuccovvueeruenrnccsuensanecsaessanccnne 75
A. CREATING A NEW DESIGN....uiiiniiceinsnensninsnensnicssessessssnsssessssesens 75
APPENDIX B. TEST BENCH GENERATION TUTORIALcccccvvneerercsecsuecsnesaecsaee 81
APPENDIX C. TOP-LEVEL VHDL CODE FOR A 1-BIT ADDER...........ccceceeureuennns 87
APPENDIX D. VHDL CODE FOR THE SINGLE RANGE BIN.......cccceecvseerurcreeseecane 89
A. TOP LEVEL VHDL CODE........uiiieiinennensninssensnesssessssecssesssssssessss 89

B. TEST BENCH FOR THE SINGLE RANGE BIN.......cccccenvecruecsenseecnnces 103

C. EXECUTING MACRO FOR THE ONE RANGE-BIN TEST BENCH110
APPENDIX E. VHDL CODE FOR THE 8 RANGE-BIN MODULATOR..........ccc... 113
A. TOP LEVEL VHDL CODEuuiiiicninsnniinensneesssessssesssesssacsssesssssssseses 113

viil

B. TEST BENCH FOR THE 8 RANGE BIN......uuuienninnnrnnnnsnnessnensannsnenns 134

C. EXECUTING MACRO FOR THE 8 RANGE-BIN TEST BENCH...... 141
APPENDIX F. VHDL CODE FOR THE 32 RANGE-BIN MODULATOR................ 143
A. TOP LEVEL VHDL CODE.........iireninnnnnenacssensnessasssssssesssessnesnens 143
B. TEST BENCH FOR THE 32 RANGE BIN MODULATOR.................. 154
C. EXECUTING MACRO FOR THE 32 RANGE BIN TEST BENCH 168
LIST OF REFERENCESuuuuiiininiininninnnensnensnnssnsssesssessesssessssssesssssssessassssssasssssssssssssss 171
INITIAL DISTRIBUTION LIST ..uccorriiiniinsiensnensnenssnnsssecssesssnesssesssnssssssssassssesssssssassssassss 173

X

THIS PAGE INTENTIONALLY LEFT BLANK

Figure 1.
Figure 2.

Figure 3.
Figure 4.
Figure 5.

Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.

LIST OF FIGURES

The DIS Concept. (After: a Presentation by Dr. Phillip Pace at Office of

Naval Research (ONR) May 2001).c.coevuiiriieiieiieeieeieeieeiee e 2
Block Diagram of the Technical Approach for the Digital Image

Synthesizer. (From Ref.[2]) ..cocuieriiiiiiiieee e 3
Architecture of DIS Implementation............cccccveeriiieniieeniieeieecieeeeiee e 4
USS Crocket and AN/APS-137 ISAR Image of the USS Crockett. 4

False Target Images Generated by a 32 Range-Bin, 256 Pulse Matlab
Simulation (Left) and 8 Range-Bin Proof-of-Concept DIS Integrated

CArcuit (RIGIL). ..eeeeieeeieeeeeee et e 5
Typical ACtIVILY FIOW. ..coouiiiiiiiiiiiieeee e 10
Different Design Views and their Level of Abstractions. (After Ref[14]) 11
Gate Level Design and Equivalent Code of RS Flip-Flop.c..cccceveniinenee. 13
Design Flow Overview in Active-HDL 5.1, ...ccocoiiiiiiiiiieee 14
Text Editor in Active-HDL.cooiiiiiiiieeeee e 15
Block Diagram Editor in Active-HDL.ccccooiiiiiiiiiieeeeeeee 16
Hierarchical State Machine Editor in Active-HDL..........ccoocoiiiiiiiiniienne 17
Transformation and Verification Flow. (After Ref.[5])..cccceevvviviiiiniiiiiens 20
The Human Factor. (After Ref.[5]) ..ccovreeiiieeeeeeeeeeee e, 20
Redundancy (After Ref.[S]). coooveeeiiiiiiieeeeeeeee e 21
Logic Gate Representation of an Adder..........ccccooeviiiiniiiniininiiniccecne 22
ROBDD Creation Step 1.coooiiiiiieiiiieeiie et eee ettt e 24
ROBDD Creation Step 2.cc.eeeiieiieiiieiieeie ettt ettt e 25
ROBDD Creation StEP 3.cocciiiiiieeeiie ettt siee e ereessareesaeeeens 25
Equivalence Checking Paths. (After Ref.[5])....ccooiiiiiniiiiiii 27
Model Checking Paths. (After Ref.[5])..cccccvvievieiiieiiiiieieeeeeeeee e 28
Functional Verification Paths. (After Ref.[5]) cccovvvveviiiiiiiiieieeeees 29
Outline of Black-Box Verification.ccooceevirienieniniienieenienceeeene 30
Outline of White-Box Verification.ccccoeciieiiiiiiiiiiiiieeeeeeeee 30
Outline of Grey-Box Verification.ccoceeeeiieriieiiinieeiieiecieeee e 31
Simulation Result of a Simple 1-Bit Adder.cccoveeiiiieiiiieeeeeeee 32
Verification Process FIOW.cooiiiiriiiiiiiniiiieeecc e 33
The Primitive Symbols of Power, Ground NFET and PFET.......................... 38
The Inverter LoZIC Gate.c.covvieiieriieiieiieeieeee et 39
Description of Inverter in Behavioral VHDL.ccccooooiiiiiiiiiieceeees 39
Description of an Inverter in Structural VHDL.cc.ccocconiiiiniiniiiiee 43
Screen Capture of the Waveform Window for an Inverter.ccccceuueee.e. 43
Block Diagram of a 1-Bit Adder without Carry Out.........ccccecervereeneriennene 44
The 1-Bit Adder in the Waveform Window..........ccccoeoieiiiniiiniiiiiienieeee, 44
Overview of the Range Bin Modulator Schematic (From Ref.[2])................. 47
VHDL Block Diagram of the 8 Range Bin Modulator.ccccccoveniennnn. 54
Waveform Window for an 8 Range-Bin Modulator.cccccocveviiiinicnnnne 59

X1

Figure 38.

Figure 39.
Figure 40.

Figure 41.
Figure 42.

Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.

Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.

Result as it Appears on the Wave Form Window for Waveform B. VBUS3

1S Tout ANd VBUS4 1S Qout. veeeevrrreeeeiiieeeeiieeeeeeiiee e eeetee e eette e et e e e earae e e e eaneeas 62
VHDL Block Diagram of the 32 Range—Bin Modulator.c..ccccceeeruenneee 64
Matlab Created False Target, Input Template (Left) and ISAR Image

(RIGNL). ettt et et 65
Portion of the Wave Form Editor Displaying the Initial 1 (Blue) and Q

(Red) Values for VEctor 32A.cevii ettt 68
Portion of the Wave Form Editor Displaying I (Blue) and Q (Red) After

Sample 25-31 and the Subsequent Overflow— OutpadQSOV (Green). 71
Getting Started Window in Active-HDL.ccccoiiiiiiiiiiieeeee 75
New Design Window in Active-HDL.cccoooiiiiiiiiiieeeen 76
New Design Window in Active-HDL.ccccooiiiiiiiiiiiieeeeeeeee 76
Find File Window in Active-HDL.ccoooiiiiiiiiiiiiieeeeeeeeeee 77
Chosen File in Active-HDL.ccccooiiiiiiiiiieieeeeeeeeeeee e 77
Configuration of Active-HDL.cccoiiiiiiiiiiiinieecceeeeee e 78
File Information in Active-HDL.cccoooiiiiiiiiee e 78
Design Specifications in Active-HDL........ccccoceviiiiniiniiniiineecceeeeee 79
Active-HDL Design Launched from External Source File. Initial Errors

According to Previous Page.coceveiiiniiniiiiiiinicieeeceeee 80
Test Bench Generation in Active-HDL...........ccoooiiiiiiiiiiiieieceeeece e 81
Test Bench Generation in Active-HDL..........c.ccoooiiiiiiiiiiieeeeeeeeeeee, 82
Test Bench Generation in Active-HDL...........ccoociiiiiiiniiiiieiececeeee 82
Test Bench Generation in Active-HDL..........cccccoiiiiiiiiiiiieeeeeeeeeeee, 83
Test Bench Generation in Active-HDL..........cccooviiiiiiniiiiieiececeeee e 83
Test Bench Generation in Active-HDL..........c.ccooiiiiiiiiiieeeeceeee e, 84
Test Bench Generation in Active-HDL..........cccoooiiiiiiiiiiiiieieeieeeece e 84
Test Bench Generation in Active-HDL..........ccccoooiiiiiiiiiieeeeeeeeeees 85

xii

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.

LIST OF TABLES

The Capabilities of the Gain Multiplier.ccccccvvievviieriiieriieeee e, 46
Test Vectors and ReSults.cocueeuiiiiiiiieniiciccce e 51
Overview of Expected Results after Eight DRFM Phase Values. 53
Programming of VEctor 8A.........ooouiiiiiiiieieeeeee e 60
Result 0f VECtOr 8A.......ooiiieiee ettt 60
Programming Vector 8B.cccooiiiiiiiiieieceeeee e 61
Result 0f VEctor 8B........oooiiiiiiieie ettt e 61
Programming of Vector 32A.ccouiiiiiieieeeeeeeee e 66
Result 0f VECtOr 32A.. ..ottt et 67
Programming of Vector 32B........cccoiiiiiiiiie e 69
Result of Vector 32B......ooiiiieee e e 71

xiil

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

ACKNOWLEDGMENTS

I would like to direct a special thanks to my family; Casey, Emma and Jack, for
putting up with me during long periods of intensive studies at the Naval Postgraduate

School.

I would also like to thank the Swedish National Defence College for believing in

my ability to successfully complete this education.

Furthermore, I would like to thank Professor Phillip E. Pace for his support and
friendship. Professor, you gave me constant encouragement and a challenging research
project, you gave me the tools to succeed, —Thank You. I would also like to single out
Professor Douglas J. Fouts who guided me through the first stumbling steps in
implementing VHDL and patiently explained the hardware functionality of our project; -
You are a big part of my success. Finally I would like to thank Professor Man-Tak Shing
who agreed to take me under his wings and embraced me in the Software community, -

Professor I learned a lot.

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

EXECUTIVE SUMMARY

The subject of this thesis is to model and verify the correctness of the architecture
of the Digital Image Synthesizer (DIS). The DIS, a system-on-a-chip, is especially useful
as a counter-targeting repeater. It synthesizes the characteristic echo signature of a pre-
selected target, i.e., the user has the opportunity to generate copies the echo signature and
displace them. The V-H-D-L-description of the DIS architecture was exported from
Tanner S-Edit, modified, and simulated. The advantages of using the VHDL text-based
programming environment was explored in both creation of models and superior
simulation speed. Different software oriented verification approaches were researched
and a White-box approach to functional verification was adopted. An algorithm based on
the hardware functionality was developed to compare expected and simulated results.
Initially, the architecture of one Range Bin Modulator was exported. Modifications to the
VHDL source code included modeling of the behavior of the N-FET and P-FET
transistors as well as Ground and Vdd (the voltages connected to the drains of the FETSs).
It also included renaming of entities to comply with VHDL naming conventions.
Simulation results were compared to manual calculations and Matlab programs to verify
the architecture. The procedure was repeated for the architecture of an Eight-Range Bin
Modulator with equally successful results. VHDL was then used to create a super class
of a 32-Range Bin Modulator, again with its functionality verified by Matlab test vectors.
Finally, two additional super classes of a 128- and a 512-Range Bin Modulator were

programmed.

Xvil

THIS PAGE INTENTIONALLY LEFT BLANK

XViii

I. INTRODUCTION

A. DIGITAL IMAGE SYNTHESIZERS
1. Background

The threat of modern, wideband imaging synthetic aperture radar (SAR) and
inverse synthetic aperture radar (ISAR) create a difficult ship defense problem. With
image capability, one cannot simply transmit a false signal to counteract the missile
radar, but must instead create an image resembling the image in an adversary’s threat

library.

The concept of image synthesizers is not new. Analog Image Synthesizers (AIS),
using lengths of cable to delay interrogating signals, have been used as counter-targeting
repeater decoys. AISs had serial taps along the length of the cable thereby creating
different range-bins. Each tap modulated the signal in amplitude and/or frequency to
synthesize reflections from surfaces within the specified range-bin. After summing the
signals from the respective range-bins, the synthesized signal is retransmitted and returns

a false echo.

The drawbacks with the analog systems, however, were that they were unreliable
and hard to use. The AISs were noisy and could not store a signal over a long period of
time and thereby reduced bandwidth and limited the size of the synthesized object. The
cable length made the system bulky and unmanageable, and at the same time, prevented

effective programming of the operating parameters.

The Digital Image Synthesizer (DIS) eliminates most of the drawbacks of the
AIS. First, it is by no means bulky and future applications may, apart from ships, include
aircrafts and Unmanned Aerial Vehicles (UAV). Second, the tapped delay line
processors are capable of storing the signal for as long as necessary. Thus, the bandwidth
is increased and synthesizing larger objects is possible. Third, the programmable nature
of the respective range-bins facilitates movement of the DIS from one target type to

another (Ref.[1]) and (Ref.[2]).

Wideband chirp in \\\\ \\””W@

¢

False target image out

menY 7 i 1\\\\\\\\ UpY

conversion Dela}r conversion

\\\\\\\'\\\Sa\&-t--.". il f'f.{-“.-*}’f‘ff/
7 iy '\\'\\\\\\\\\

(I})16-bits
Phaslt.atog frog[;a:mma!:)le | DAC]
» amplitude arget 1maging . ,_||—|
sampling ASIC DACH
X (Q)16-bits
Target extent Target Tar, get
motion amplitude

Figure 1. The DIS Concept. (After: a Presentation by Dr. Phillip Pace at Office of Naval
Research (ONR) May 2001).

2. Functionality of the Digital Image Synthesizer

Figure 1 represents an overview of the technical approach to the DIS, and a
functional block diagram representing is presented in Figure 2. The antenna receives a
wideband chirp signal from interrogating search radar(s). The system receiver down-
converts the signal and breaks it into In-Phase and Quadrature components (I and Q)
where I is the real part and Q is the imaginary part of the signal. The signal information
is then digitized and stored in a Digital Radio Frequency Memory (DRFM). The phase
samples are then read serially from the DRFM into the DIS through the tapped delay

line(s), or the range-bin processor(s).

The DIS ASIC is controlled by an off-chip microprocessor. A look-up table is
used to generate the appropriate I and Q values after the implementation of a phase shift
on the digitized phase samples. The amplitude required of the resulting data is controlled

2

by the microprocessor and is implemented by left shifts in the gain multiplier. Each
range-bin processor performs summations in series. The last range-bin in the application
produces a total sum representing a digital false target image sample. After digital to
analog conversion of the I and Q, up-conversion and transmission of the false target

occurs.

Wideband Synthesized t‘*&
T / chirp signal target signal

DOVR Up
Camersion LO " Corwersion
b
[T EEE SRS EEEEEEEEEEEE— |
I Q 1 |
¥ ¥ ; 1 |
Phaze &-hit phase data > ves !
sampling : :
: % ¥ ¢N :
! N N K
I “lace ' |DAc| | Dac
| |
: LUT r | -t
1
Computer I I
Image Contral I — complex (|Ig;._l |
(i), f (prase)| ~ foe 3 .
A S A gain Ay I
I latches : I
Fltargetextent |7 T g
LY |
Adder | tee — adder |1
L ™ I
E [|

17

Figure 2. Block Diagram of the Technical Approach for the Digital Image Synthesizer.
(From Ref.[2])

The range resolution of the DIS synthesized false target is determined by the
resolution possible by each range-bin and the number of range-bins in series. The

resolution can be calculated by:

g - C
2fa

Mg, =Ry *NRB

where R, is the range resolution of an individual range-bin, f,, is the clock frequency of
the chip and C is the speed of light. With a DIS operating at 600 MHz, the range

resolution is 0.25 m. The maximum size of the synthesized false target M, is then

dependent of the number of range-bins N, (Ref.[12]).

Phase Phase Phase Phase
1= Range ¢ = Range [¢ = Range (47 I Range I
«Qq | Binn « Q| Bin n-1 €« q | Bin n-2 <« Q Bin 0 R —

Figure 3. Architecture of DIS Implementation.

The plan is to eventually create a DIS with 512 range-bins operating at 600-
800MHz. As seen in Figure 3, the phase of the range-bins are fed in parallel while I and

Q are fed in series from one range-bin to the next.

The following real ISAR image, visual image and Matlab-synthesized image are

an example and proof of concept of what this technique can provide (Ref. [12]).

Figure 4. USS Crocket and AN/APS-137 ISAR Image of the USS Crockett.

Figure 5. False Target Images Generated by a 32 Range-Bin, 256 Pulse Matlab Simulation
(Left) and 8 Range-Bin Proof-of-Concept DIS Integrated Circuit (Right).

The CMOS proof of concept, 8 Range-bin, Integrated Circuit (IC) was developed
using the Tanner Tools Pro IC design software package. This IC has been fabricated and
tested and found fully functional at a 70 MHz clock speed (Ref.[12]). As is seen in Figure
4 and Figure 5 the synthesized images have a strong resemblance to the one generated by
the ISAR.

B. PRINCIPAL CONTRIBUTIONS

The objective of the research in this thesis was to verify the design and
functionality of the single Range-bin Modulator circuit as well as the 8-Range-bin
Modulator circuit designed with Tanner Tools Pro. The verification was to occur using
VHSIC Hardware Description Language (VHDL), where VHSIC in turn stands for Very
High-Speed Integrated Circuits. The VHDL tool used was Active-HDL 5.1, by Aldec.
Another goal of the research was to produce larger multiples of range-bins using VHDL.

A 32-Range-bin processor was created through VHDL.

The first step was to export simple logic gates from S-Edit into a VHDL format.
Simulations in which the result was known and obvious were then generated in order to

understand the process.

Second, larger and more complex adders and registers were exported. The
behaviors of the field effect transistors (FETs) were implemented in VHDL and the

correct operations verified.

Third, the correctness of first one single and then eight combined range-bins was

tested.

Finally, the 8-Range-bin processor was used in order to create a software super-

class of 32 Range-bins.

In all instances, software was generated automatically, modified by hand, and
tested in order to verify correctness of the designed component.

C. THESIS OUTLINE

The purpose of this thesis is to verify the circuit design and schematic of serially
connected Range Bin Modulators operating at clock speeds of 600 MHz. The remainder

of this thesis is organized as follows.

Chapter II presents the capabilities of VHDL as the means to design and/or verify

digital circuit design.

Chapter III ventures into different methodologies of verification of a hardware

design using software methods.

Chapter IV outlines the methodology and process of code extraction, as well as

presents the modifications necessary in order to simulate the design in VHDL.

Chapter V presents the verification methodology used in this thesis. It displays

obtained simulation results from different levels of the overall design.

Chapter VI summarizes the results of this thesis and makes recommendations on

further verifications and the use of VHDL.

Appendix A contains a tutorial describing the process to follow to create a VHDL

design using an externally created source file.

Appendix B contains a tutorial describing the process to follow to create a Test

Bench using a saved wave form.

Appendix C contains VHDL code for a 1-bit adder.
6

Appendix D contains VHDL code and Test Bench for the single Range-bin

modulator.
Appendix E contains VHDL code and Test Bench for the 8 Range-bin modulator.

Appendix F contains VHDL code and Test Bench for the 32 Range-bin

modulator.

THIS PAGE INTENTIONALLY LEFT BLANK

II. CAPABILITIES OF VHDL

A. INTRODUCTION
1. History of VHDL

The acronym VHDL is a two-layer acronym that stands for VHSIC Hardware
Description Language, where VHSIC in turn stands for Very High-Speed Integrated
Circuits. DoD initiated the VHDL program in 1980 to address the hardware life-cycle
crises by improving documentation and reducing maintenance costs. By 1985, a team of
DoD contractors, including TI and IBM, delivered the first version of the language. By
1987, VHDL had become an IEEE standard and by 1988, an ANSI standard. After the
addition of some new features, the current standard of the language is IEEE 1076-1993.
Drafts for a revised standard are currently in progress.

2. Digital Design Using HDL

The design of a digital system starts, as with other designs, with requirements
specifications. Eventually a physical implementation of a chip is created through a
stepwise, refined functional design. A typical activity flow in a top-down design

environment can be seen in Figure 6.

As with software specifications, one major problem is capturing the client’s
requirements. This is perhaps a first indication of the use of formalism in hardware

specifications, validation and verification.

After the top-level specification, decomposition from behavior to structure leads

to the eventual physical design.

Historically different HDLs were appropriate for different levels of abstraction.
Graphical editors were the design environment of choice, providing the hardware
engineer with a “sense and feel” of the progress of the design. One such example is the
Tanner Tools Pro S-Edit program used to design the schematics tested in this thesis. S-
Edit consists of parts to design pictorial schematics. It does not, however, include a
logic-level simulator such as Verilog or VHDL, but S-Edit, which is the pictorial
schematic capable of generating and exporting VHDL code. This code is used
throughout this thesis.

to another.

/_/

Requirements
English-Formal

e

Functional Design
Algorithmic

v

Register Transfer
Level Design

v

Logic Design

v

Circuit Design

v

Physical Design

—

Manufacturer
Description

/‘\/

Behavioral
Domain
Behavioral
Simulation >

RTL Simulation

Logic Simulation
Verification

Timing Simulation
Circuit Analysis

Design Rule
Checking W,

Structural
Domain

Figure 6. Typical Activity Flow.

simulation and verification.

interfaces allow “old-fashioned” design.

10

This thesis spans the last activities of the behavioral domain as well as the logic

In contrast to Tanner SPICE, VHDL and Verilog provide a series of constructs
that can be applied at different levels of abstractions to provide multiple views of the
system as exemplified in Figure 7. The languages are mainly text based, but graphical
These HDLs are used throughout the

development cycle by transforming from one level of abstraction, or so called synthesis,

VHDL and Verilog are technology independent and not tied to a specific
methodology. They can be used as a design tool for a custom or an ASIC chip as well as

an FPGA.

The languages strongly resemble regular programming languages but are
specially oriented to describe hardware structures and behaviors. One of the main
differences is the ease at which parallel operations are implemented versus sequential

ones.

The concept of Virtual Prototyping relies heavily on the capability of the HDL.
Previously, the software that processed the data streams on a board design could not be
tested until the hardware was available. However, with a HDL capable of describing the
exact behavior of the components, it is possible to simulate the completed hardware for
software development purposes.

3. Logic Synthesis

The real driver for the modern HDLs is the ability to move from one level of
abstraction to another. Logic Synthesis can, for instance, transform a Register Transfer
Level (RTL) description of a circuit into combinatorial logic. On this level, it is also
possible to apply software verification techniques such as model checking and theorem
proving. Logic synthesis is performed in two steps. First, the translations of the HDL
description into an intermediate form are completed. Second, an optimization process of

more vendor-specific technology mapping is conducted.

Behavidgral Structural

Boards

Physical

Figure 7. Different Design Views and their Level of Abstractions. (After Ref[14])
11

B. OVERVIEW OF VHDL CAPABILITIES AND ACTIVE VHDL
1. VHDL as a Programming Language

The primary hardware abstraction in VHDL is the design entityl. It represents a
part of the design with well-defined inputs and outputs and performs a well-defined
function. Each entity consists of two parts: its declaration and its architecture. The entity
declaration defines the interfaces much like a software class declaration while the
architecture body describes input-output transformations and/or the internal composition
or behavior of the entity more like a software object. Interactions between concurrent

statements are modeled through signals.

A component describes a substructure of the design entity that is interconnected
through signals. Sequential statements such as loop and case statement are grouped
together under the concurrent process statement. During execution all concurrent
statements are executed during one simulation cycle and the values of all modeled signals
are being computed. No VHDL model should depend on the order of execution of its

concurrent statements.

When a signal takes on a new value, the sensitivity list of the concurrent
statement decides if the statement is sensitive to that particular signal and acts

accordingly. When all concurrent statements are suspended, simulation time advances.

The design and matching code in Figure 8 implements the behavior of the signals
with logical statements on its signals. The same functionality could have been

implemented in several different ways.

1 Words in italic are protected VHDL constructs.

12

©Q
CLK_|

Q_not

library IEEE;
use IEEE.std logic 1164.all;
entity My _flip_flop is
port(
CLK not : in STD_LOGIC;
R:in STD LOGIC;
S :in STD_LOGIC;
Q :out STD _LOGIC;
Q not : out STD LOGIC);
end My _flip_flop;
architecture My _flip_flop of My _flip _flop is
signal NET107 : STD_LOGIC;
signal NET124 : STD_LOGIC;
signal NET37 : STD_LOGIC;
signal NET41 : STD_LOGIC;
begin
NET41 <= not(CLK_not and S);
NET37 <= not(R and CLK not);
NET124 <=not(NET107 and NET41);
NET107 <= not(NET37 and NET124);
Q not<=NET107,
Q <=NETI124;
end My flip flop;

Figure 8. Gate Level Design and Equivalent Code of RS Flip-Flop.

2. Active HDL

The tool chosen to perform the VHDL simulations was Active-HDL 5.1
developed by Aldec, Inc. of Henderson, NV. Active-HDL provides a number of features
useful in the development as well as testing of hardware components. Its simulation
technology features include compliance with IEEE VHDLI1076-87/93 and IEEE
Verilog1364-95. Furthermore, it supports EDIF 2.0.0 and Single or Mixed Language

Configurations. The design flow manager of the language can be viewed in Figure 9.

13

& Active HDL 5.1 (freq_meter) - Design Flow Manager

File Edit Search Yiew Design Simulation Tools Window Help DR
H = Z o B DO TS G £ % e e 1000s 5= [= o=
x
|Top—LeveI selection j
Unsarked |

] I@ freq_meter
g% Add Mew File
) readme.txt
JShexzled.vhd
=P JCOMTROL, asf
JCONTROL vhd
2} Sreqd
J andz.vhd
& Jenk_ah.vhd
+48- f CNT_ECD.bde
+40-f CNT_BCD2 bde
+H40- fFreq_top.bde
CNTE. vhd
El JStestbench_cnt_becd_conf,vhd
+{ 7] TestBench
[i‘ freq_meter library

timing
simulation

. |
2 Files /& Structure, 3 Resou.. % design flow (% controlasf % cnt_hed bde

n M Toodem:s AMa22 A Soawndorr LRETER =+ Nna e uTule]

B Console

UM INS

Figure 9. Design Flow Overview in Active-HDL 5.1.

Active-HDL provides the user the opportunity to create a design in three different
ways:

o Through the HDL text editor , Figure 10, the user can build its model as
with any other software language

. Through a Block Diagram Editor, Figure 11, graphical symbols of gates
and combinatorial logic elements can be combined into larger entities

° Through the Finite State Machine Editor, Figure 12, the user can
graphically enter a design based on state diagrams

The Active-HDL text editor resembles programming in, for instance, C or C++.
This environment is tightly integrated with the compiler and simulator in order to provide
debugging capabilities. Furthermore, the text editor provides, among other things, built-
in language assistance, the capability of automatically generating design structures,

setting and clearing of code breakpoints and cross probing of error messages. Active-

14

HDL has the ability to create block diagrams or finite state machines from the source

code.

Active HDL 5.1 (freq_meter) - D:\y_DesignsiSamplesiFreq_meterisrcihex2led. vhd

File Edit Search View Design Simulation Tools ‘Window Help

BE-SEH % @Y 00T C G B e £ m e oo

x ¢4 | IEEESE v b 48 | ¢! | 4 % | iI= =3
Top-Level selection - 1 I—— "
— | -- File: e:\my desigms\freg meter\srco\hexzled.vhd
Unsorted] -— created by Design Wizard: 02/16/99 05:20:17
- freq_meter la __
ﬁ‘é Add Mew File 5
g Readme. bxt 5 ——{{ Section below this comment is automatically maintained
& . hexzled.vhd G - and may be overwritten
—H%F f CONTROL. asf = ——{entity {hexZled) architecture {hexzled]}
E.f CoNTROL.vhd | | |2
) Srego 10
1 ./ andz.vhd 11 library IEEE;
& Jent_4b.vhd 12 use IEEE.std logic_1164.all:
+HE J CNT_BCD.bde £2))
B JONT_BCDZ.bde 1: entity hexZled is
+HE- ffreq_top.bde port | i
T vhd 16 HEX: in STD LOGIC WECTOR (3 downto 0O):
c . 17 LED: out STD LOGIC WECTOR (& downto 0)
" ftestbench_crt_bce - -
15 1
0 TestBench 15 end hex2led: hd
fiifi freqa_meter library | ||, 8
@
21 ——}} End of zutomatically maintained section
¢ S X hd
4 3
[ZIFiles/&FStr.., aRe .. ¥ design flow ¥ controlasf ;& cnt_bed.bde :E hex2led vhd
Tacdimnes AMN=22 oW Sandarr fermetr Nd 2N
= £ 3
B Console
Ln1,Cal 1 UM INS

Figure 10. Text Editor in Active-HDL.

The Block Diagram Editor is a form of graphical description of a design entity in
which each diagram has a counterpart in the VHDL source code. Active-HDL has a built
in, vendor independent, symbol library with basic gates and combinatorial logic elements.
Furthermore, Active HDL provides the designer with the ability to create their own
combinatorial logic to save for reuse in subsequent applications. Other features of the
Block Diagram Editor are the capabilities to import and export EDIF schematics as well
as the feature of fast Design Rule Checking (DRC). The block diagram, when compiled,

automatically generates source code that can be executed.

15

ctive HDL 5.1 (freq_meter) - D:\y Designsi\SamplesiFreq_meterisrcA\CMT_BCD.bde

File Edit Search Yiew Design Simulation Diagram Tools Window Help

BH-EE =% | B 5O Y Q0 5 & B w e 1000 5 x
2 QMma | [& S| 2£ k@
|TUD-LEVB| se\ecticj [I T L T B R K U 11] ' Tame: Description S
Esortad N CLKD— DCLK = Built-in symbols
freq_meter o FESET — ORESET o andz 2-Input AND Gate 1
g% addMewF| ||| T NTERERS andzb1 2-Input AND Gate 1
] Readme.tx - B andzbz Z-Input AMD Gate '
B hexdledt| || e ek FOLL and3 3-Input AND Gate ©
T VJONTROL' _______ T F|ENAELE eam and3hl 3-Input AND Gate 1
OJEON;R N R * - HEEEED and3bz F-Input AND Gate +
req 22 I R
8/ andz.vhd L I IR, CNT 45 - and3b3 3-Input AMND Gate
Jenk_dbovhe L I [. and4 4-Input AND Gate +
+HD- fCNT_BCD.t =31 AR I anddb1 4-Input AND Gate +
e JouT BCD2| | DD anddbz 4-Input AND Gate
+He- ffreq_top.b R I . and4b3 4-InNput AMD GAEE 1
cnrrvnd ||| R v b . - Pt S
€ ftestbench_ R LT R
+{_7] TestBench - L RPN
il freq_meterl L e B
ikl | i o
.< ¥ Arial - ZvB[gév @v‘_ﬂv Qo [—] -] -
ER =N % design flow % controlasf ;& cnt_bed bde (E hexZled vhd
Toodmn: 10792 AW Snwndarr fucet N4 N2
x |4 ¥
H Console
Pane 1/1

Analysis file using synthesis kool

Figure 11. Block Diagram Editor in Active-HDL.

The Hierarchical Finite State Machine Editor allows the user to graphically enter
a state diagram based design. State machines can then automatically be converted into

HDL code for viewing and debugging.

In order to provide the capability to manufacture System-on-Chip (SoC) designs,
Active-HDL offers a number of vendor specific libraries. It provides a seamless
integration from design, through testing, to production when combined with the

appropriate synthesizer.

16

@ Active HDL 5.1 (freqg_meter) - D:iy DesignsiSamplesiFreq_meterisrc \CONTROL . asf * |
File Edit Search Wew Design Simulation FSM Tools Window Help T ow o x

B-EH 22 BF 20oWYT 0 ® ® SO Mo 10002
. 7 Qma q &Ee s

Top-Level selectic » -1 [1] 3 ' 3
Evttiy contral ~

ot Ak ectre control_anh
freq_meter
@ o E-mar _II}EID_REEF

é’% Add Mew F oo [ReseT DeeTe
) Readme.tx [} F-PATTERM
Jhexzled. vk -]
—HF J COMTROL,
J CONTR
[Sregn
Jandz.vhd
SJfont_gb.vhe -+
+H40- JCNT_BCD L
+He- f CNT_BCD2
+He- ffreq_top.b
CNTT. whd
[.:E;I Jtestbench_
+{77] TestBench
[i’ freq_meter | wo-

%= [= g= Mo simulation

E

5 ' [' 7 ' 3 ' 4 1 inch

-

1

<
< > A& W =20 g B =0 @® AT~
B % .G T design flow % controlasf* (T cnt_bcd.bde ;& hex2led.vhd

W # Tiasmdcms AM?2 AW Sawmdar Raaees =+ N4 FAnT
x |£ >

B Console
WYHOL

Figure 12. Hierarchical State Machine Editor in Active-HDL.

This thesis uses the capability of Active HDL to support automated software
engineering. The ability to go from code to block diagram proved valuable as well as the
capability of the application to support testing and verification. Active HDL handles test
benches, coded and generated manually, as well as automatically generated test benches

where saved wave forms are used.

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

III. SOFTWARE VERIFICATION METHODS

Different software methodologies can be used in order to remove the tedious
verification of hardware designs. Previously, hardware was verified after a prototype was
built. This was an expensive practice as changes were hard to implement and a new
prototype might have had to be built instead. Similarly, a graphical hardware design
languages normally is time consuming, compared to VHDL, when designs are simulated.
VHDL only simulates “1”, “0” , “Undefined” and “High Impedanse” while T-Spice is a
circuit simulator and must keep track of all voltages, currents and charges on all wires.
This section explores some software methods suitable to test and verify hardware design.

A. TESTING AND VERIFICATION

A test can be defined as an activity in which a system or component is executed
under specified conditions and the results are observed and evaluated with respect to
correctness. Verification is the process to ensure whether the component was built
according to specifications. Testing is part of the verification process. In today’s design
efforts, testing and verification (TaV) needs to be planned early in the process. TaV is
clearly a critical part of a project. Nowadays, huge efforts are undertaken to produce

tools and methodologies in order to reduce overall verification time. (Ref.[5])

In its strictest interpretation, testing cannot take place until a prototype or a
finished product is built. In this thesis, however, testing also refers to verification of
hardware design using test vectors and a software test bench.

1. Reconvergence

Since the purpose of verification is to ensure that transformation generates the
expected results, a second, reconvergent path with a common source is needed, see

Figure 13.

19

Input

Figure 13. Transformation and Verification Flow. (From.[5])

Transformation can be any process that takes an input and produces an output.
The verification process links the result with the starting point, making it possible for the

verification effort to compare the actual output with the expected output.

One problem that arises in verification is the human factor. Figure 14 introduces

Transformation

Verification

Output

specifications; misinterpreted they may introduce errors in the verification process.

Spec Interpretation—p» Input

Figure 14. The Human Factor. (From.[5])

If the same team, or individual, who designed the entity is also involved in
performing the verification process, obvious risks can arise causing the verification to be
flawed. In that case, verification is that of the interpretation and not the specifications.

If the interpretation is wrong in any way, so is the verification, and therefore, the error

may never be caught with these verification efforts.

20

Transformation

Output

In order to prevent human interpretation errors, increased automation and
redundancy can be used. Automation removes human intervention, but it is not always
possible and it is seldom feasible in processes that are not well designed. Furthermore,

there is no guarantee that the automation tool is flawless.

Redundancy is another way to reduce risk. It requires duplication of all
transformation resources. Interpretations are performed independently and results are
compared at a common output. Figure 15 shows how redundancy can be implemented

and guarded against the misinterpretation of ambiguous specifications.

/Transformation
/V Input

Interpretation

Interpretation
\Verification

\‘ Input

Figure 15. Redundancy (From.[5]).

B. FORMAL VERIFICATION

Different systems lend themselves to different types of verification. The
following section will introduce some methods that might be used in the verification of
an Integrated Circuit design represented in VHDL.

1. The Use of Logic

In order to achieve error-free Very Large Scale Integrated Circuit (VLSI) designs,
different, complementing approaches to simulation and synthesis have been developed.
One such attempt is to apply formal verification of the design's correctness. Formal

verification, in this sense, is to verify the functionality correctness of the circuit.

There are a couple of inherent problems when deriving the formal verification
however. First, conventional HDL languages lack the power for formal behavior

descriptions. Second, a large gap exists between circuit descriptions and the
21

mathematical domain (Ref.[4]). In order to bridge these problems, most development
environments use a HDL, such as VHDL or Verilog, or a subset of them, and implement

some form of “formalized behavior” descriptions of the language.

The logic domain is the part of the mathematical domain most suitable to model
the characteristics and properties of the applicable object. Logic, including first-order
predicates, higher order predicates and temporal logic, is the overwhelming choice in

performing formal verifications (Ref.[3]).

To exemplify formal verification, a simple adder is constructed.

S1_"D Cout
Al__r ;_ S2 >
s s S

Sum
Cin |_)D

Figure 16. Logic Gate Representation of an Adder.

If the adder in Figure 16 is modeled in first order logic it might look like this:

For Allt>=0=>
(S1(t)=A(t) AND B(t),
S3(t)=A(t) XOR B(t),

S2(t) = Cin(t) ANDS3(t),
Sum(t) = Cin(t) XOR S3(t),
Cout(t) = S1(t) OR S2(t))

Where A XOR B
Is equivalent to (A AND B) OR (A AND B)

And
Cin XOR S3

Is equivalent to (Cin AND S3) OR (Cin AND S3)

22

After removing S1 to S3 the expression will read:

For All t>=0=>

(Sum(t) = Cin(t) XOR (A(t) XOR B(t)),
Cout(t) = A(t) AND B(t) OR

(Cin(t) AND (A(t) XOR B(t)))

All that remains is to verify that the specification in the VHDL model corresponds
to the logical model for all values of A, B and Cin.

library IEEE;

use IEEE.std_logic 1164.all;
entity My Full Adder is
port(

A :in STD_LOGIC;

B :in STD _LOGIC;

Cin : in STD LOGIC;
Cout : out STD LOGIC;
Sum : out STD _LOGIC
);

end My Full Adder;
architecture My Full Adder of My Full Adder is
signal N3 : STD_LOGIC;
signal N2 : STD_LOGIC;
signal N1 : STD_LOGIC;
begin

Nl <=Band A;

N2 <= Cin and N3;

N3 <=Bxor A;

Sum <= Cin xor N3;
Cout <=N2 or N1;

end My Full Adder;

Concentrating on the last section of the code, after the begin statement, the Sum
was verified next. Sum = Cin XOR N3, and N3 in turn equals B XOR A, leading to Sum
= Cin XOR(A XOR B)). This is the same expression in the logical description.

23

2. Binary Decision Diagrams and Computational Tree Logic

Binary Decision Diagrams (BDD) and Computational Tree Logic (CTL) are two
other basic parts of formal verification.

a. BDD

BDD is a rooted directed acyclic graph with two terminal nodes: the 0-
terminal and the 1-terminal. An ordered Binary Decision Diagram (OBDD) is a BDD in
which the input variables appear in a fixed order on all the paths of the graph and no
variable appears more than once in the path. A Reduced Order BDD (ROBDD) is an
OBDD that results from the repeated application of the rules described in Figure 17 to
Figure 19:

1. Remove duplicate terminals:

Figure 17. ROBDD Creation Step 1.

24

2.

3.

Condense duplicate nodes with identical parents and children:

Figure 18. ROBDD Creation Step 2.

Remove redundant nodes:

Figure 19. ROBDD Creation Step 3.

25

b. CTL

CTL adds path quantifier (A, E) and temporal operators (X, G, F, U, W)
to first order logic. Temporal logic is used to express properties of possible simulations
of a design. The path quantifier A(E) selects all (some) simulations, and the temporal
operator X (G, F, U, W) selects the next simulation cycle (all cycles, some cycle, until

some cycle, unless some cycle).
As an example, the expression:
AG(p=>A[p U q])

corresponds in plain English to: “From all cycles in which p holds, p always continues to
hold until q holds”.
3. Equivalence Checking

The simplest form of formal verification is proving the equivalence of two
circuits. FORTE (Ref.[6]) allows the user to verify both combinatorial as well as
sequential equivalence. Its purpose is to prove that two circuits produce the same output

regardless of input.

An exhaustive application of all possible inputs and a comparison of all the
outputs are involved for the combinatorial circuit. If the same output is produced, the

circuits are functionally equivalent.

When the circuits possess different state properties, sequential equivalence must
be checked instead. To be equivalent, the circuits must start in some initial state and have
identical outputs and transitions for all possible sequences of inputs. Equivalence
checking is only interested in comparing boolean and sequential logic functions. The

functions to a specific technology are not mapped.

26

Synthesis

RTL or RTL or
Netlist Netlist

Equivalence
Checking

Figure 20. Equivalence Checking Paths. (From.[5])

The most common use of equivalence checking is the comparison of netlists,
shown in Figure 20. This ensures correctness of the synthesis tool and that manual
modifications implemented during netlist post-processing did not change any
functionality.

4. Model Checking

Model checking is a relatively recent application of formal verification. As seen

in Figure 21, it attempts to prove or disprove certain design assertions or characteristics.

Model checking seems to be the most investigated approach used for the
verification of a hardware chip. Siemens Circuit Verification Environment (CVE) is one
approach described by Borman et al. (Ref.[7]). CVE is a BDD based model checker that
supports VHDL and Electronic Design Interchange Format (EDIF). It generates VHDL
test benches for proposed counterexamples if it detects a design error. CVE is operated

from a menu driven graphical user interface (GUI).

The designer has to specify the properties to be model checked and must then
consider entire sets of behavior. Two features help the designer. One feature is CVE’s
Interval Language (CIL) which is an extension of Boolean VHDL expressions. The
second is an algorithm that automatically generates a special finite state machine (FSM)

representation for synchronous circuits.

Another model checker supporting VHDL is CV (Ref.[9]). CV essentially uses
logic CTL as its specification language. The VHDL description is compiled into a state-

27

transition graph represented internally by BDDs. Then model checking techniques are
used to determine if the VHDL specification holds. CV performs computation of
reachable states and eliminates unreachable states from the simulation. Further it
implements a boolean functional vector to limit the explosion of the size of the transitions

in larger systems.

A third example of a model checker implementing VHDL is RuleBase. (Ref.[9])
RuleBase 1s a formal verification tool developed by IBM Haifa Research Laboratory. It
is an enhanced version of SMV developed by Ken McMillan at Carnegie-Mellon
University. As in the previous example, it uses the CTL model checking verification
method through its own language called Sugar. Sugar is built on top of CTL and
provides a method for hardware designers, who are not CTL experts, to read and write

specifications.

RTL Coding

Spec RTL

Interpretation_/' Assert '\ Model
Checking

Figure 21. Model Checking Paths. (From.[5])

The greatest difficulty in applying model checking is to identify which assertions
to prove. Of the identified assertions, only a subset can feasibly be proven.

5. Theorem Proving

PREVAIL (Ref. [10]) is a menu driven, automatic proof environment that verifies
certain categories of synchronous sequential circuits. A VHDL subset is taken as input as
well as a description style associated with formal semantics. The tool operates in two
steps:

o After compilation of the VHDL code, PREVAIL inputs an intermediate
form of the entity and architecture description. It then builds a
corresponding, proof-oriented, functional circuit representation.

28

o The second part uses a query-answer dialogue with the designer in order to
determine circuit type and selects between a tautology checker (checking
for redundant repetitions) and the Boyer-Moore theorem-prover.

The Boyer-Moore theorem-prover allows the inductive definition of abstract data
types called shells. A Boolean recognizer recognizes whether an object belongs to the
shell. Furthermore, the definition of recursive functions are allowed and a robust
verification by the system of the correctness of the recursive form is performed. Next,
the inductive theorems expressing properties of these recursive functions are proven. To
prove a property by induction, the prover automatically generates an induction scheme
according to the definition of the recursive function involved in the property.

6. Functional Verification

The purpose of a functional verification is to ensure that a design implements
intended functionality. Functional verification compares the design specification to a
measured result. It must, however, be noted that unless the specification is written in a
formal language, it is impossible to prove that the intended specifications are met.
Functional verification can show that the intent of the specification is met but it can

hardly prove that the functionality is faultless.

RTL Coding
Spec RTL or
P Netlist
Functional
Verification

Figure 22. Functional Verification Paths. (From.[5])

Functional verification as depicted in Figure 22 can be implemented through

different approaches and methodologies. The approaches, black-box, white-box, and

29

grey-box combined with bottom-up or top-down methodologies, constitute the
cornerstones of functional verification.

a. Black-Box Verification

The black box verification, Figure 23, implies no knowledge of the
internal implementation of a particular design. Verification takes place through the

interpretation of the output from a specific input.

Input Output—>»

Figure 23. Outline of Black-Box Verification.

The difficulties with black-box verification is its lack of controllability. It
is a challenge to design a certain state combination or to isolate a specific function. This
leads to difficulties in determining the source and location of potential problems as well

as its occurrence in time inside the black-box.

The main advantage of black-box verification is its independence of a
specific implementation. black-box verification can be used on hardware in the form of
ASIC chips or FPGAs as well as a design represented in software. Another advantage is
the ability to construct functional verification in parallel with the development of the
implementation itself.

b. White-Box Verification

White-box verification, Figure 24, sometimes named clear-box or glass-

box, provides full visibility of the internal mechanisms of the implementation.

Process
Input—» P+ P — P ———Output—p»

Figure 24. Outline of White-Box Verification.

30

The advantages of having control over the internal structure of the
implementation are obvious. Interesting combinations of inputs can be designed to
trigger particular functions. The result of the input can be followed through the design
and errors can be captured where they occur. White-box verification is especially useful

in order to check the functionality of counters or overflow guards.

The drawbacks of the approach are the symbioses between the test and its
host implementation. It cannot be used in the same format on other implementations. It
also requires detailed knowledge of the Unit Under Test (UUT) in order to know which
conditions to create and which results to expect.

c. Grey-Box Verification

The compromise between the two is the grey-box, or opaque, verification
seen in Figure 25. The verification efforts benefit from the knowledge of the internal

structure of the implementation while treating it as a back-box.

Process

Input—bw Process—— ——Output—>»

Figure 25. Outline of Grey-Box Verification.

As with the black-box approach, the top level interfaces are used to trigger
and control the verification efforts. Test cases may or may not be useful on other
implementations.

C. SIMULATION

Most implementations of testing and verification involve some form of simulation
activity. In VHDL, simulation refers to the implementation of a discrete event and is
normally conducted through the implementation of the box-approaches from the previous
section. The discrete event simulator executes the VHDL code, modeling the passage of
time and the occurrence of events at certain times or after certain delays. Discrete event

simulations utilize an event list data structure that maintains an ordered list of all future

31

events in the circuit. Each event is described by its type, for instance, a transition from 1

to 0 and the time when it occurs. The event simulator works in the following steps:

o Advance the simulation time to the event which has the smallest
timestamp

. Execute all events at this timestep by updating their signal values

o Execute the simulation models of all components affected by the new
values

o Schedule future events

o Repeat until event list is empty or time has expired

The result of the simulation is normally presented in a waveform window.

However, signals can also be followed through a block diagram.

d 1 === S [. . -

1 . . 40, K an 00
Mame [%.. |5t e 40 fenpe ™

o4 1 iCl. 1
B 0 .. [| [L
=0 1 Ce.. [[[T] [
® Lo T I T L
°5 0 T LT L

Figure 26. Simulation Result of a Simple 1-Bit Adder.

Such a simulation requires knowledge of the expected output at the abstraction
level being simulated. The simulated result is then compared to the expected result
which is often derived mathematically. One example of a sesult is that of the 1-bit adder

in Figure 26.

One obvious drawback of this verification type is the state explosion that occurs
when large, complex systems are constructed. To counteract the increase in size of the
test design, a hybrid test design, i.e., the gray box, approach can be implemented. The
expected output from a given input in a black box approach has to be combined with the

tests of the internal composition of the system.

32

D. CHOSEN METHODOLOGY

The verification of the DIS was conducted through a white-box, functional

verification approach and implemented through discrete event simulation.

The different areas of the design were verified stepwise and tested independently.
Smaller parts were integrated into larger parts, and thereby, increasing the scope which
lead to an overall bottom-up integration. After verification of the smaller components,
the partially automatically generated single range-bin and 8 Range-bin implementations
were tested. The final step consisted of designing and verifying the logical functions of a

VHDL coded 32 Range-bin implementation.

VHDL Behavioral
Models
Amend
l behavior
VHDL

Analyze
Result

Schematic Capture Export VHDI N Simulation

Tanner S-Edit

Execution
. T Change
Insert in test parameters
. . bench
Stimulation |) VHDL Test Bench
Matlab/By hand Generation

Figure 27. Verification Process Flow.

This approach verifies the interfaces between the individual system-components
constituting the whole system. It is suitable for a system with stable interfaces and
components developed by different teams, as is the case with the 8 Range-bin
implementation which has parts designed by five different researchers. It is equally
useful when testing larger entities of software created modules later. The process

implemented on each level is described in Figure 27.

33

THIS PAGE INTENTIONALLY LEFT BLANK

34

IV. VERIFICATION OF HARDWARE DESIGNS

Veritying the ability of the VHDL tool to import and simulate the Tanner S-Edit
developed schematics was one of the purposes of this thesis and the subsequent
supporting research. If successful, a considerable amount of time would be saved due to
a decrease in simulation time by several orders of magnitude compared to T-Spice circuit
simulations. ~ After experimenting with gate level as well as transistor level
implementations, the decision was made to export as complete a model as possible. As a
result, the smallest entities of Ground, Power, NFETs and PFETs became the building
blocks of the DIS.

A. VHDL CODE EXTRACTION

A considerable amount of time during the research process dealt with the process
of exporting the graphic S-Edit design to VHDL code. Initially, it was possible to export
a VHDL text file and open it with Active-HDL. However, once the files were opened
they did not work as expected. It was discovered that certain bi-directional ports had to
be directed in order to run the model in VHDL. Furthermore, libraries had to be
initialized for each entity of the design. The entities can be viewed as the scope in which
variables operate.

1. Extraction Guidelines

The following steps had to be undertaken in order to export VHDL files from
Tanner S-Edit schematic diagrams:

. Ensure no modules are defined as VHDL primitives except for NFETSs,
PFETs and the global power and ground symbols

o For NFETs, PFETs and the global power and ground symbols, declare
them as VHDL primitives by adding a property to the symbol (not the
schematic) version of the module. The property should say: [VHDL
PRIMITIVE=]

When creating the property, the value field should be “blank™, the
separator character should be “=", the text size should be “2”, the value
type should be “Text”, and show should be set to “none”.

o All ports must be defined as in or out, even for the global power and
ground modules. For the global power and ground modules, make the
ports out. For FETs, make source, gate, and bulk in and make drain out.

35

On the symbol version of NFETs and PFETs, it is best to indicate what is
the source and what is the drain so when these are instanced at a higher
level, the ports can be connected up correctly.

o Pass gates must be made unidirectional and use unidirectional (in or out)
ports. It is best to supply the symbol of the pass gate with an indication of
the direction so that when the symbol is instanced at a higher level, the
ports will be connected up correctly.

. There must not be any networks in any module connecting to output ports
and at the same time connecting to the inputs of other logic gates in the
module. If such a network exists, a non-inverting buffer (2 inverters in
series) must be inserted before the output port.

o Delay buffers must be inserted on the outputs of signals that control flip-
flops. The VHDL programmer will adjust the amount of delay.

B. VHDL CODE MODIFICATION

The modification of the code depends on the level at which the schematic
designer exports the VHDL file. VHDL is used to create the behavior of the designed
entities. The behavior can be instantiated at the transistor-level, gate-level or at the
combinatorial level. Given that the guidelines for code extraction are followed, the only
modifications apart from behavioral instantiation, is compliance with VHDL naming
rules and entity declarations.

1. Naming Conventions

Identifiers are used both as names for VHDL objects, procedures, functions,
processes and design entities, and as reserved words. There are two classes of identifiers:

basic identifiers and extended identifiers.

The basic identifiers are used for naming all named entities in VHDL. They can
be of any length provided that the entire identifier is written in one line of code.
Reserved words cannot be used as basic identifiers. Underscores are significant
characters in an identifier and basic identifiers may contain underscores, but using an
underscore as a first or last character of an identifier is not allowed. It was discovered
that dashes, -, could not be used in a basic identifier early in the research effort. The
rules for the basic identifiers in are:

o A basic identifier must begin with a letter

. No spaces are allowed in basic identifiers

36

. Basic identifiers are not case sensitive, i.e. upper- and lower-case letters
are considered identical

o Basic identifiers consist of Latin letters (a..z), underscores () and digits
(0..9)

The extended identifiers were included in VHDL '93 in order to make the code
more compatible with tools making use of extended identifiers. The extended identifiers
are braced between two backslash characters. They may contain any graphic character as
well as reserved words. If a backslash is to be used as one of the graphic characters of an
extended literal, it must be doubled. Upper- and lower-case letters are distinguished in
extended literals.

2. Entity Declaration

For each entity declared in a design, whether it is in the same file or not, libraries
need to be added. The most common declaration and the only one needed in this thesis

was the following:

LIBRARY IEEE;
USE IEEE.std_logic 1164.all;

Std logic 1164.all uses more memory than, for instance, a bit library. For the
purpose of this research, it was never a concern.

3. Behavior

Although the designs tested are mainly of a structural nature, behavior needs to be
defined for certain entities. To drive the DIS Designs, Ground, Power, NFETs and
PFETSs needed to be assigned a behavior.

C. CREATION OF MODELS

After the specific circuit was exported, a VHDL design representing that design
was created. See the tutorial in Appendix A.

37

1. Inverter

The first successful exported Spice design was that of a simple inverter. Using
the building blocks in Figure 28; Ground, Power, NFET and PFET a shell of the inverter

was created, Figure 29.

\Vdd G\D
Vdd —

G =48 & ED

St

Figure 28. The Primitive Symbols of Power, Ground NFET and PFET.

38

B
A

Figure 29. The Inverter Logic Gate.

If implemented at the gate level, a behavioral model of the inverter in VHDL
might have been implemented as in Figure 30: one line transferring a negated input signal

to the output.

LIBRARY IEEE;
USE IEEE.std_logic 1164.all;
-- FxEEx DJF Inv-1x model ***%*
-- external ports
ENTITY \DJF Inv_1x\IS PORT (
\In\ : IN std_logic;
\Out\ : OUT std_logic);
END \DJF Inv_1x\;

-- internal behavior
ARCHITECTURE behavioral OF \DJF Inv_1x\IS
begin
\Out\ <= not(\In\);
END behavioral,

Figure 30. Description of Inverter in Behavioral VHDL.
39

If the inverter is allowed to serve as an example for the modifications necessary in
VHDL in order to successfully simulate an implementation, Figure 31 shows necessary

changes and additions to the code.

LIBRARY IEEE;

USE IEEE.std logic 1164.all;

o ckekeskesksk Gnd mOdel sesksksksk

-- external ports

ENTITY Gnd IS PORT (Gnd : OUT std_logic);

END Gnd;

-- internal behavior)

ARCHITECTURE behavioral OF Gnd IS Insertion of Ground
BEGIN and Vdd behavior

Gnd <='0"; ¢—
END behavioral;

LIBRARY IEEE;

USE IEEE.std logic 11

__ kekekekek Vdd mOdel skskoskskosk

-- external ports

ENTITY Vdd IS PORT (Vdd : O

END Vdd;

-- internal behavior

ARCHITECTURE behdvioral OF Vdd IS
BEGIN

vdd <="1"
END behavioral;

logic);

Insertion of libraries

LIBRARY IEEE;
USE IEEE.std logic 1164.all;
-- kAR CG_NFETx1 mode] *****
-- external ports
ENTITY CG_NFETx1 IS PORT (
B : IN std_logic;
D : OUT std_logic;
G : IN std_logic;
S : IN std_logic);
END CG_NFETx1;

40

-- internal behavior
ARCHITECTURE behavioral OF CG_NFETx1 IS
BEGIN
NFET:PROCESS(B,G,S)
BEGIN
if G ='0' then D<='Z;
elsif (G='1" and S='0") then D <="0';

elsif (G="1"' and S='1") then D <="1";
elsif (G='1' and S='Z") then D < 'Z';

Insertion of libraries

end if;
end process NFET;
END behavioral,

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

Insertion of NFET
and PFET behavior

-- ¥¥¥%% CG_PFETx1 model *****
-- external ports

ENTITY CG_PFETx1 IS PORT (
B : IN std_logic;
D : OUT std_logic;
G : IN std_logic;
S : IN std_logic);
END CG_PFETxI1;
-- internal behavior
ARCHITECTURE behavioral OF CG_PFETx1 IS
BEGIN
PFET:PROCESS(B,G,S)
BEGIN
if G ='1' then D<='Z',
elsif (G='0' and S='0") then D <="0';
elsif (G='0" and S='1") then D <="1";
elsif (G='0' and S='Z") then D <="'Z,
end if;
end process PFET;
END behavioral;

41

LIBRARY IEEE;

USE IEEE.std logic 1164.all; <« Insertion of libraries
- #HERECG _Inv_1x mode] *#***

-- external ports
ENTITY CG_Inv_1x IS PORT (

\In\ : IN std_logic;

\Out\ : OUT std_logic);
END CG_Inv_1x;
-- internal structure
ARCHITECTURE structural OF CG_Inv_1x IS
-- COMPONENTS
COMPONENT Gnd
PORT (

Gnd : OUT std_logic);
END COMPONENT;
COMPONENT CG_NFETx1
PORT (

B : IN std _logic;

D : OUT std_logic;

G : IN std_logic;

S : IN std_logic);
END COMPONENT;
COMPONENT CG_PFETx1
PORT (

B : IN std_logic;

D : OUT std_logic;

G : IN std_logic;

S : IN std_logic);
END COMPONENT;
COMPONENT Vdd
PORT (

Vdd : OUT std logic);
END COMPONENT;

42

-- SIGNALS

SIGNAL LogVdd : std logic; < Renaming of signals to
SIGNAL LogGnd : std_logic; avoid global conflicts.
-- INSTANCES

BEGIN

Gnd 1:Gnd PORT MAP(
Gnd => LogGnd);
NFET 1:CG _NFETx1 PORT MAP(
B => LogGnd,
D =>\Out\,
G =>\In\,
S => LogGnd);
PFET 1:CG _PFETx1 PORT MAP(
B =>LogVdd,
D =>\Out),
G =>\In\,
S =>LogVdd);
Vdd 1:Vdd PORT MAP(
Vdd => LogVdd);
END structural;

Figure 31. Description of an Inverter in Structural VHDL.

Functional verification of the inverter was easily conducted by running a simple
stimulus on the in-port and verifying that the output signal, as in Figure 32, was the

opposite.

nr |_|:| E]I'-.-II |:| |:|

nr | pgland

Figure 32. Screen Capture of the Waveform Window for an Inverter.

Implementations of NAND gates with two to five input ports and a two input

NOR gate were verified in a similar manner.

43

2.

Subsequent Models

After gate level verification, type specific components of the DIS were tested.

These components were the 1-bit adder, the 5-bit adder, the 16-bit adder, the 4-bit

register, the sine-cosine look up table and the Pass Gate. The Block Diagram, Figure 33,

and Waveform, Figure 34, were used in order to be able to follow and verify the

correctness of the signals. A short time increment comparing the drivers allowed

incremented inputs. For the VHDL source code for the 1-bit adder, see Appendix A.

LIBRARY |EEE,

USE IEEE.std_logic_1164.all; -

8

el s

] DL Pass e Butter

sl s

DJF. PassG:

Coutot

...... i

DJF. PassG:
'OJF Pas

Cor 0

: : 4“‘#’ Couhot
g gl

. DIF PassGate_x

{C)ALDEC.Inc. - - - -
2230 Corporate Circle
‘Henderson, Nv 83074

== DEC

""" ‘Created:

- . The Design. Verification Company. - .
1 4M0/2002

Title: .

.. 1-bit adder.

CAuthor: |

HakanBergon |

‘Source:

G:\Nly_DesignsiRangebin1isreicy rangebinm odulz

Figure 33. Block Diagram of a 1-Bit Adder without Carry Out.

120

= B 1 Cla... |

B i 1 Clo... | | [| [
B LAY, 1 Cla.. |

B 4B, 0 Clo... l

-5 0]

ar pq] l [

ar M1E 0 | [

nr N17 0 I N e N
nr bz 0 [] [
LU Npeli 1 | l

Figure 34. The 1-Bit Adder in the Waveform Window.

44

D. VERIFICATION OF SINGLE RANGE BIN MODULATOR

The first complete circuit layout verified was that of a Single Range Bin
Modulator designed by Major Christian Guillaume (Ref. [2]). Verification was obtained
by testing 31 vectors and comparing them to hand calculated, Matlab calculated and

Spice simulated results.

In order to verify the basic function of the Range Bin Modulator, vectors (DRFM
phase values) are applied to the modulator together with different values of phase
increment and gain. Initially, the [and Q inputs, i.e., the values from a previous Range

Bin Modulator, are set to zero.

Control signals are tested and their effects on the output data from the Range Bin

Modulator verified.

When VHDL was used, simulation time for the single Range Bin was a matter of
a few seconds. Tanner Tools Pro, on the other hand, needed approximately 30 minutes to
conduct the same simulation.

1. Underlying Mathematics

The output result for each range Bin can be calculated mathematically and then

added to the result of a potential previous Range Bin.

Initially, an unsigned 5-bit representation of the phase of the signal leads to
increments of 11.25° when the 360° of possible phase is divided by 32. The same is true

for the incremented phase coefficient.

The gain is implemented through a gain shifter, essentially using a 4-bit control

code to apply the gain multiple.

Table 1 shows the truth table for the gain shifter. The “Control code” corresponds
to the decimal value of the unsigned 4-bit word applied to the gain input (Gain0 - Gain3).
The “Multiplication factor” is the effective decimal value by which the input of the gain
shifter is multiplied. The “Size of shift” gives the corresponding number of bits to the
left by which the input is shifted. The “Sin/Cos wave resolution” gives the resolution in

bits of the I and Q signals at the output of the gain shifter (Ref.[2]).

45

Control Multiplication Size of Sin/Cos Wave
Code Factor Shift Resolution
0 1 0 3
1 2 1 4
2 4 2 5
3 8 3 6
4 8 3 6
5 16 4 7
6 32 5 8
7 64 6 8
8 16 4 7
9 32 5 8
10 64 6 8
11 128 7 8
12 128 7 8
13 256 8 8
14 512 9 8
15 1024 10 8

Table 1. The Capabilities of the Gain Multiplier.

The output from the Single Range Bin Layout can be mathematically calculated

as follows as an example:

1,,, = GAIN * Cos(DRFM + INC)
O,,, = GAIN *Sin(DRFM + INC)

A quantized DRFM phase of 5 corresponds to 56.25°, a Phase Increment of 1

corresponds to 11.25° and a Gain code of 6 equals a multiplication by 32.
The following results can be calculated:

1,, =32*Cos(56.25+11.25)=12.25
Oy, =32%*Sin(56.25+11.25) = 29.56

These results are well in unison with the results for test vector five in the test

result table following later.

46

The I and Q values are stored in a 16-bit, two’s complement format, with a
decimal point two positions in. Thus, the I and Q values range from approximately +
8200 to — 8200.

E. LAYOUT

The schematic design of the Single Rang Bin, Figure 35, is as follows:

Overview

3)

1)

2)

1) Phase increment

2) Phase data from DRFM

3) Pre-load register

5) 5-bit adder

6) Look Up Table
7) 16-bit adder
8) Gain shifter

)
)
)
4) Pipeline register
)
)
)

9) Input from previous bin

10) Control Logic
11) Output to next bin

Figure 35. Overview of the Range Bin Modulator Schematic (From.[2]).

F. CONTROL SIGNALS

A number of control signals and phase signals have to be instantiated with certain
values at certain times in order to drive the simulation. The functions of these signals are

as follows:

Use Range Bin (URB): when a logic one is present on the rising clock edge, the
selected Range Bin Modulator operates normally. The result of the modulator is added to

the result of the modulator of the immediate preceding range bin, and the sum is provided

47

to the next Range Bin Modulator in the chain. When a logic zero is present on the rising
clock edge, the current modulator is not used for computation, and its output reflects only

the value of the previous modulator in the chain, assuming that one is in use.

Phase Sample Valid (PSV): when a logic one is present on the rising clock edge,
which is the normal case, the current modulator computes output values given its
programming and the present DRFM phase. The result is added to the result of the
previous modulator. When a logic zero is present on the rising clock edge, the result of
the current modulator is forced to zero, and only the result of the previous modulator is

applied to the output of the current modulator.

Output Data Valid In (ODVin): when a logic one is present on the rising clock
edge, the Range Bin Modulator works normally. When a logic zero is applied, two
outcomes may arise depending on the result of the current modulator computation. In the
first case, if the result of the current modulator is valid, then it will be added to the result
of the previous Range Bin Modulator and provided to the next one in the chain. In the
second case, if the result of the current modulator is invalid, then the output register is

forced to zero, and the “Output Data Valid Out” (ODVout) is set to zero as well.

Program Range Bin (PRB): a logic one makes the pre-load buffer registers on

the gain inputs and the phase rotation inputs load the data.

Use New Programming (UNP): a logic one makes the gain and phase rotation

registers load the data in the pre-load buffer registers.

Gain (Gain0-Gain3): an unsigned 4-bit representation of the control code used in

order to implement the correct multiplication factor.

Phase Increment (IncO-Inc4): an unsigned 5-bit representation of the 32 different

pre set phase increments.

DRFM (DRFMO0-DRFM4): an unsigned 5-bit representation of the 32 different

signal phase values.

48

G. DRIVER INPUT METHODOLOGY AND EXPECTED OUTPUT

The design of the Range Bin Modulator operates on the rising edge of a clock
cycle. The following algorithm was developed in order to ensure a correct sequence of
initialization of registers.

H. TEST ALGORITHM:
At same time:
Set Phase Inc to desired value for Rbi
Set Gain to desired value for Rbi
Set Use Range Bin to “1”
Set Phase Sample Valid to “0”
Set Operate/Main to “1”

Set Program Range Bin to “1”

Clock, rising edge = 1 ms at 500MHz

At same time:

Set Use New Programming =“1"
Set Phase Sample Valid =1
Set Program Range Bin to “0”

All else don’t care

Clock, rising edge = 3 ms at S0O0MHz

At same time:

Set Use New Programming =*“0"

49

Set Use Range Bin =“0”
Set phase sample from DRFM to desired value

All else don’t care

Clock, rising edge = Sms at S00MHz

At same time:

Change phase sample from DRFM all other signal the same
Clock

Repeat

Continue until last phase sample

After last phase sample at same time:

Phase sample valid =0

Phase sample from DRFM don’t care

Clock

As long as ODVout is “1”, IS and QS (The output from I and Q) are valid.
Continue to check until ODVout =0”

ODV out goes low after 4 +n(#of range bins) clocks after last edge that
loads valid DRFM sample into top of RB.

I'in and Q in to next RB =“0”

50

I. TEST AND RESULTS

After initial tests, the VHDL design was verified using 31 different test vectors.
The result was compared with results generated in Matlab by another researcher and the

results obtained when simulating with T-Spice (Ref.[2]).

DRFM | INC | GAIN Matlab T-Spice VHDL Result
Result Result

phase | angle | code | Iout | Qout Tout Qout | Iout | Qout
1 1 1 1.8 0.8 1.75 0.75 1.75 0.75
2 2 2 2.8 2.8 2.75 2.75 2.75 2.75
3 3 3 3.1 7.3 3.0 7.25 3.0 7.25
4 2 5 6.1 14.6 6.0 14.5 6.0 14.5
5 1 6 12.3 29.3 12.25 | 29.25 | 12.25 | 29.25
6 0 7 24.5 58.5 24.5 58.5 24.4 58.5
7 1 11 0 127 0 127 0 127
8 2 13 -98 234 -98 234 -98 234
9 3 14 -360 360 -360 360 -360 360
10 2 15 -720 720 -720 720 -720 720
11 1 0 -0.7 0.7 -0.75 0.5 -0.75 0.5
12 0 1 -1.4 1.4 -1.5 1.3 -1.5 1.25
13 1 2 -3.7 1.5 -3.75 1.5 -3.75 1.5
14 2 3 -7.9 0 -8 0 -8 0
15 3 5 -146 | -6.1 -1475 | -63 | -14.75 | -6.25
16 2 6 293 | -12.3 | -29.25 | -12.3 | -29.25 | -12.25
17 1 7 -58.5| -24.5 -58.5 | -24.5 | -58.5 | -24.5
18 0 11 -117 -49 -117 -49 -117 -49
19 1 13 -180 | -180 -180 -180 -180 -180
20 2 14 -196 | -468 -196 -468 -196 -468
21 3 15 0 -1016 0 -1016 0 -1016
22 2 0 0 -1 0 -1 0 -1
23 1 1 0 -2 0 -2 0 -2
24 0 2 0 -4 0 -4 0 -4
25 1 3 3.1 -7.3 3 -7.5 3 -7.5
26 2 5 11.3 | -11.3 11.25 | -11.3 | 11.25 | -11.25
27 3 6 293 | -123 | 2925 | -12.3 | 29.25 | -12.25
28 2 7 58.5 | -24.5 58.5 -24.5 58.5 -24.5
29 1 11 117 -49 117 -49 117 -49
30 0 13 234 -98 234 -98 234 -98
31 1 14 508 0 508 0 508 0

Table 2. Test Vectors and Results.

51

Marginal differences due to rounding implementations can be observed between
the Matlab results and the two simulated results in Table 2.

J. VERIFICATION OF 8 RANGE-BIN MODULATOR

The 8 Range-bin modulator was, as the single range-bin, created schematically in
S-Edit by another project researcher. The schematic was then exported as a VHDL file.
A new VHDL design was created and the necessary amendments to the design were

implemented.

Verification was initially obtained by simple handcrafted vectors based on the 31
vectors used for verification of the single range-bin modulator. Later, Matlab created

vectors were used.

The initial values of I and Q were yet again set to zero and the effect and expected
values of the control signals were verified.

1. Underlying Mathematics

The mathematics for a multiple range bin modulator works the same way as a
single range-bin modulator. The output result is the result of a correlation like
summation of all the range-bins. The first valid output equals the value of the first
DRFM phase value affected by the programming of the last range-bin. Subsequently, the
second valid output is a summation of the second DRFM value passing through the last
range bin and the first DRFM value passing through the second to last range bin, and so

on until there is no more phase data.

In the case of an 8 Range-bin modulator, at least eight DRFM phase values are
needed to fill up the system and influence the output. An overview of the system is

shown in Table 3.

52

RB 0 RB 1 RB 2 RB 3 RB 4 RB 5 RB 6 RB 7 Sum
Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5 | Phase 6 | Phase 7 | Phase 8 | Output 8
Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5 | Phase 6 | Phase 7 | Output 7
Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5 | Phase 6 | Output 6
Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5 | Output 5
Phase 1 | Phase 2 | Phase 3 | Phase 4 | Output 4
Phase 1 | Phase 2 | Phase 3 | Output 3
Phase 1 | Phase 2 | Output 2
Phase 1 | Output 1

Table 3. Overview of Expected Results after Eight DRFM Phase Values.

values are being fed to the system.

fed in parallel.

Layout

A valid output value can be expected from the last range-bin as long as phase

The 8 range-bin modulator consists of eight identical single range-bin modulators

In addition, extra control signals have been added in order to enable

programming of the individual range-bins. Figure 36 depicts the eight different range-bin

entities and the control signals.

It should be viewed from left to right where all the

signals entering the system are applied to the left and the results can be viewed exiting

the last range-bin to the right.

53

=1

MH‘HHH

I—

T

I—
I—

|
%
\
|

= ‘
— I
= —
“>— [t == = f]
T3 —
e i 1 T
-5 i ==
. e ——

Figure 36. VHDL Block Diagram of the 8 Range Bin Modulator.
54

‘
‘
T—
— H
—
—
—
—
— 2
— } =
= ‘
—| —
=
=
i
—
=
— T
= ‘ =
[— T
= —
~a — \‘\
= I—
T—
1
]
\‘\ s
I—
— =

3. Additional Control Signals

New control signals were developed in order to program multiple range-bins. A
block containing a 3 bit binary signal was created to choose from range-bin 0 to range-
bin 7 and enable the signal. The output from this block is connected to the Program

Range Bin port of the individual range-bins.

Enable : a logic one activates the block in order to transfer data from the block to

the individual range-bins.

RBinSelect0—:2 : steers the programming to the correct range-bin

4. Driver Input and Test Algorithm

The algorithm used to verify a multiple range bin design builds on the one used
for the single range-bin. However, the number of range-bins determines the ODVout
signal, which is one of the more interesting in order to verify correctness. The algorithm
below depicts implementation of an 8 range-bin modulator using a clock speed of 500
MHz.

a. Test Algorithm

At same time:

Set Phase Inc to desired value for Rb-7
Set Gain to desired value for Rb-7

Set Enable to “1”

Set RbinSelect0 to “1”

Set RbinSelect1 to “1”

Set RbinSelect2 to “1”

Set Phase sample valid to “0”

Set Use new programming =“0"

Set Operate/Main to “1”

ODVin to =“0”

55

Clock rising edge

At same time:

1 ms at S00MHz

Set Phase Inc to desired value for Rb-6

Set Gain to desired value for Rb-6

Set RbinSelect0 to “0”
Set RbinSelect] to “1”
Set RbinSelect2 to “1”

All else the same

Clock rising edge

3 ms at S00MHz

---Repeat until all Range-bins are programmed, last one is:

At same time:

Set Phase Inc to desired value for Rb-0

Set Gain to desired value for Rb-0

Set RbinSelect0 to “0”
Set RbinSelect] to “0”
Set RbinSelect2 to “0”

All else the same

Clock rising edge
At same time:

Set Enable to “0”

15 ms at S00MHz

56

Set Use new programming =“1"

Phase sample valid still =“0”

All else don’t care

Clock rising edge 17 ms at 5S00MHz

At same time:

Set Use new programming =“0"

Set Phase sample valid =“1"

Operate/Main still “1”

Set first phase sample from DRFM to desired value

All else don’t care

Clock rising edge 19 ms at S00MHz
At same time:

Change phase sample from DRFM all other signal the same
Clock

Repeat until last valid phase sample, this example has 10 valid samples.

Clock rising edge 37 ms at 5S00MHz

After last phase sample at same time:

Phase sample valid =“0”

57

Phase sample from DRFM don’t care

Clock rising edge 39 ms at 500MHz

Continue to check until ODVout from Rb-7 =0

4 clocks after 1% valid DRFM data is clocked into top of all RB

ODYV out from RB-7 goes high, i.e. at 27 ms ODVout =1

ODV out goes low after 4 +n(#of range bins) clocks after last edge that
loads valid DRFM sample into top of RB.

ODV out from RB-7 goes low after (37 + 4*2+8*2ms) =>

ODVout =“0” at 61 ms

Figure 37 presents a waveform window from Active HDL where these
numbers can be verified. In this case, the virtual bus VBUS3 represents the DRFM
phase, VBUS4 is the Gain coefficient, and VBUSS is the Phase increment coefficient.

Furthermore, the first VBUSO is the range-bin being programmed and the
second VBUSO is Loy, Qout 1s represented by VBUS2.

The first and second window overlaps and depicts the signal values from

Oms to 80ms.

58

Mame Walue | Shi [A T T T - T ' B S S S S R S - R S ' I S SR R

e ENABLE 0 Fo.
aLs3 0 7 & &
WBUSY 12 13 14 15 14 15 13
YELSE 0 0 / N\

= UNP R (111

X /

= LRB

(

& OD%in

(==

= ODYout

L

’
N

= Oper

o PSY
WBLSD
WEBLS1

& InPadiDY

WBLS2
& InPadi 0%

WBUS3 E5535 65535

WBLSA EG535 65535
© DutPadi30
< DutPadi51

WRUSD
< DutPadiS0Y
< DutPadls0
< DutPadist

WBUS2

& OutPadQs0V
vBUS? 5535 z =3 4535 {52505 HEU535 (56535 454535 WGGIE {49535 44599 Y4BT WABE55 J60047 HE204T Ya4l

gieteTe e le

g 0 60 760 41260 (2260 2750 NATEO A4000 4am4 4202 ja70 {3e7T2 13T fzee

7 0 B0 50 .eo0 450 (660 W.FE0 400 4838 (99 N030 (riEd 01084 K0

gigigieieieiete

wBLISS E5535 ? = 195 599 %999 {1793 42199 2999 {3190 49591 3975 44359 S4T30 43 jadl

.
&
-
&
n
=

Name Walue |Sti. S . 4 . B0 . . BE . 4 . T . 4 . 75 . .80
o EMABLE 0 For...
WRLISE 30
WRLISS 13
WBLISE 0

B NP 0 For

= LURB
= 0DVin
= 0DVout

e
=

==

0
N[

& Oper

B PSY

WELISO
WELIST

& [nPadi0V
WBUS2
& InPadi0y
VELS3 ER535
WELIS4 BE535
© QutPadlS0
< DutPadiS1
WELISD

© QutPad50%
© OuPadls0
© QutPaddst
WBUS2

© QutPaddsoy
WEUST BE535
VBLUSE 65535 2199 §2999 3199 43581 /3978 #4959 #4735 J4395 4319 2043 2951 ArB3 391 jessds

cioiatiaiaio

Sio oo iaia T e e

Figure 37. Waveform Window for an 8§ Range-Bin Modulator.

As can be seen in the circles, the implementation of UNP and PSV results

in an ODVout valid for the expected period of time.

59

Iout and Qoye can be viewed at the bottom of the window. In this situation,
the 8" through the 10" output sample represents values from all range-bins. After the 10™
output, the value tapers down to zero when the sample no longer is valid.

5. Tests and Results

Four lengthy Matlab generated vectors were used to verify the 8 range-bin
modulator. To exemplify the input and expected output, the following values were
generated for two of these. Using the first 10 phase samples from each vector the
programming of the 8 range-bin modulator was made with the values in Tables 4 and 6.

a. Vector 84

Programming of range-bins:

Rb # | Multiplication | Gain Phase
Factor Code | Increment
Rb 7 256 13 0
Rb 6 512 14 0
Rb 5 512 14 0
Rb 4 1024 15 0
Rb3 512 14 0
Rb2 1024 15 0
Rb 1 256 13 0
Rb 0 256 13 0

Table 4. Programming of Vector 8A.

Matlab describes the results as an imaginary number. The results after the

first 10 DRFM samples of Vectors 8 A and 8B are shown in Tables 5 and 7 respectively.

Sample DRFM Matlab result Tow Qout
Phase

1 31 250-505 250 -50
2 31 750-1507 750 -150
3 31 1250-250j 1250 -250
4 31 2250-450j 2250 -450
5 31 2750-550j 2750 -550
6 31 3750-750j 3750 -750
7 31 4000-800j 4000 -800
8 30 4234-898j 4234 -898
9 30 4202-994j 4202 -994
10 30 4170-1090j 4170 -1090

Table 5. Result of Vector 8A.

60

The results of Table 5 can be viewed in Figure 37. Given the fact that it is
a form of correlation, it becomes tedious to verify by hand. However, sample one should
provide a result for I of Cos 348.75* 256 which is equal to 251.1, and Q should be Sin
348.75 *256 which is equal to —49.9. After sample two, the calculation would be: for I
(Cos 348.75* 256) + (Cos 348.75* 512) = 753.2 and for Q: (Sin 348.75* 256) + (Sin
348.75% 512) = -149.8. As in the case with the single range-bin, the lack of fidelity of the
16-bit adder representation creates rounding errors that account for minor differences.

b. Vector 8B

Programming of range-bins:

Rb # | Multiplication | Gain Phase
Factor Code | Increment
Rb 7 256 13 28
Rb 6 256 13 26
Rb 5 256 13 22
Rb 4 256 13 16
Rb 3 512 14 16
Rb 2 256 13 13
Rb 1 256 13 16
Rb 0 256 13 15

Table 6. Programming Vector 8B.

Sample DRFM Matlab Result Tout Qout
Phase

1 0 180-180j 180 -180
2 31 240-446; 240 -446
3 31 94-690j 94 -696
4 31 -204-674j -204 -674
5 31 -708-624; -708 -624
6 31 -912-382j 912 -382
7 31 -1134-344j -1134 -344
8 30 -1424-266j -1424 -266
9 30 -1458-222j -1458 -222
10 30 -1496-190; -1496 -190

Table 7. Result of Vector 8B.

61

I ame

Walue

e 0 30 32 3 3B e x 3B 0 4D 0 . 42 0 A L 4B

& CLK

Cla...

N S) S Sy o

© OutPadlS0

© OutPadl51

WBLUS3

0 Siz40 it e hEE ootz Nt dwzs wms wes e

= OutPadl 50V

< OutPaddso

= OutPadisl

WBLUS4

B 446 1636 674 624 -am2 HET 266 W-zze 10 i

© OutPadisoy

[s [s |

Figure 38. Result as it Appears on the Wave Form Window for Vector 8B. VBUS3 is I,y and

VBUS4 is Qou.

Figure 38 shows the Waveform window during verification of Vector 8B.

The output signals have been combined into buses and converted into decimal notation

for easier reading.

62

V. VERIFICATION OF 32 RANGE-BIN MODULATOR

A. CREATION OF 32 RANGE-BIN MODULATOR

The 32 Range-bin modulator was created by software. It was programmed in
VHDL using the Active-HDL text editor. The 32 Range-bin modulator is a super class
consisting of four 8 Range-bin modulators with the I and Q signals connected in series
and the programming and control signals connected in parallel. Verification of the 32

Range-bin modulator again had to be conducted using Matlab generated vectors.

As an early proof of concept, a 2 Range-bin modulator was programmed using the
Single Range-bin modulator as a building block. This entity was tested using a

combination of the initial test vectors and the result was deemed satisfactory.

The different codes used to create and test the 32 range-bin modulator can be
viewed in Appendix F.

1. Underlying Mathematics

The same effect of the individual single Range-bins can be observed in the 32
Range-bin modulator as in the case with the 8 Range-bin modulator. The difference is
that 32 phase samples are needed instead of eight in order to fill the system. As in the 8
Range-bin case, the output is an added correlation of the 32 Range-bins where the sum is
read after the last range bin. See Table 3.

2. Layout

Figure 39 displays the layout of the 32 Range-bin modulator. The tool, from the
VHDL code produced, automatically created the block diagram. Global signals, or

signals that are fed in parallel to all the range bins, are depicted without connecting wires.

63

m@gw@km CDRFM3CDREM4
in2Bain3 nc0nctCnc2
fio CRRYeuC0perCPSVCUNP

’ B, 324
P ouraas]— o OutPadiso
“pern oursas|— D OutPadist
“pie ouraas]— o OuPadis?
“pern ouasd D OutPadiss
rew oupaas{—D OutPadis
ENABLE 2 auras]—B OutPadiss
o ausas] — B OulPadiSs
o o —B OutPadiS7
e 323 " ouPsase] —B OutPadiS
o covo e cupsassl —B OutPadis
b0 5 0utPadiSTo
e oue ot oupaasii|—D OutPadiS11
Prie oumim{———————— | curaas— D OulPadiS12
b o ey oupaasil—BOutPadiS13
e B outpadists
ENABLE B> o aupaasis—5 OulPadiS15
o o 20501 —D OulPadiSOV
et ouea uewost—D OutPadQsO
e 2.2 e o ospaanst—D OulPadQSt
e covod]- fim vl oewosd—D OutPadas2
b o s ess0s{—D OutPadQs3
b oure eatt oseainsd—D OuIPadQSs
b o etz o oseausf—D OulPadQS5
b oure ety o oseainsd—D OuIPadQSe
b o eue o oueaans—D OulPadQST
ENABLE o pats o a5 —D OutPadQss
o o ot aur oseaansd—D OulPadQS9
e 2 e o {eu i enosi|—D OutPadas 10
e o ot oupaansi{—D OulPadQS1 1
—fu . o ey o oseaistd—D OuIPadQS12
o our w0 ouen a0 o oveaansi—D OulPadQS13
e ourw utt o a1 o w5 —D OulPadQS T
P oura ez e euaz oupaa oupaansid—D OulPadQS15
e oue i o s o oseainsol—D OutPa
b ourm owss oo atts oupas-—D\OutPad~IS0,
ENABLE ——fwois o s o {rutts e upar510{—D\OutPad-IS101
e . st ouen eatcy o B
o o ear o a0 o \oapa-stzf —D\OuPad-IS12\
e o et o a1 ou \ouPas-515—D\OutPad~IS13
—fra o feas o iz o \oapac-sisl—D\OuPad-IS14\
InPadie>- ©\0utPac-IS15\
InPad P> \OutPad~IS1\
InPadi> ©\0utPac-iS2\
InPadigD>
iy =G— oty fpir (a8 —B\OutPad-iS4\
InPadl§>
InPad§> s —
InPadiP> oapus stz
InPadig> o
InPad$>
o ‘oupar
InPad!i B>
o) s fouicrs
Todpat
putts v Yt
InPadiOn> prasi|—
INPadQP——feuic0 aue e
InPadQP—feaict aupacs v 1P
InPadQE>——— | Inpasarz Pac-
INPadQP——feuics i fewats apas-so)
InPadQID—{rewor o s arurs
InPadQE>——peasas oo
InPadQE——pewics v oy oears
I1PadQI>——{rewr : o o M o
e — et earia upu-059—\OutPad-QS9\
InPadQE——feaics cupa-tsi{—| e o
B — e e
11PadQB——pemiatt upar et H
—pown o
b toura in
b ourmas i
rvied n
[forsatt apa- ey
[fosetz voupas-cs it
o A ey
oy
oy s
i o
o iy a1
RB_81_inSelecit” rseeto \ouPaa- o n
RB_81 inSeleckD———ersasr 0 o onsy
e Evteres
o 5 " ron
AnPad~11 > fipasin TVBREPS
\nPag~12D>——— a2 oseat-co|
o Hobsy
rpuiean
DIVBREPS
RB_84.|
\nPag-IF>—— | RB_84_inSel
\nPad-QS——fips-c0
\InPag~-Q1P——{iPw-cto RB_84_inSel
\InPad~Q1 f>——inPac-ar
\nPad-Q1 hnpac-arz
- hrpac-ara
\nPad-Q14P——neain
\InPad~Q18D——{uss-ats,
\nPad-Qfb—reon RB_63_inSelec|
e —) 83 i
] RB_63_inSel
\nPad~QeP——iss-0n
\npad-OfF [reon RB_63_inSels

RB_82_inSelecil
RB_82_inSeleck?
RB_82_inSeleci2”

oL

DRFME—

DRFME—

DRFMB—

DRFMEB—

DRFMP—

Gaing>—

Gain>—

Gaind>—

Gaind>—

o>

Inet—

IncZ>—

IneT>—

Incd>—

oDviF—

-Dobvout
Ope—
PS\D—
UNR—
URB>—

Figure 39. VHDL Block Diagram of the 32 Range—Bin Modulator.

64

3. Additional Control Signals

In order to program each individual range-bin, the Enable signal had to be split
into Enable 1—4 and the RBinSelect0—2 was divided into RB_81 inSelect0—2 to

RB_84inSelect0—2.
4. Driver Input and Test Algorithm

In order to verify the 32 Range-bin modulator, the algorithm described in IV.J.4.a
will be used. The only difference to the original algorithm is the expectations on
ODVout. Since the four different modules of 8 Range-bins are fed with phase values in
parallel, ODVout from the last range bin will go low after 4 (due to the single Range bin)
+ 8 (due to the 8 Range-bin module) clock cycles after the last loaded valid phase sample.
B. IMPLEMENTATION OF TEST CASES

Matlab was used to produce the 32 Range-bin, 32 pulse false target in Figure 40.
Four of these pulses were singled out during the verification effort: the first and the last
and the only two pulses generating adder overflow (Ref.[13]). In the next section, two of

those pulses will be presented in vector form.

Matlab generated the following images and output signals utilizing 32 range-bins.

32-range bin False Target Profile - 1253 Radar Pulses

[N
]

o
[=]

UL

!

-
- A
-

fai]
=]

B0+

Daoppler frequency [Hz]

W

40+

20F

Range bins

Figure 40. Matlab Created False Target, Input Template (Left) and ISAR Image (Right).

65

C. SIMULATION AND VERIFICATION
1. Programming of Vector 32A

Programming of range-bins:

Rb # Multiplication | Gain Phase
Factor Code | Increment
Rb 31 128 11 0
Rb 30 128 11 0
Rb 29 128 11 0
Rb 28 256 13 0
Rb 27 256 13 0
Rb 26 256 13 0
Rb 25 128 11 0
Rb 24 128 11 0
Rb 23 1024 15 0
Rb 22 256 13 0
Rb 21 256 13 0
Rb 20 512 14 0
Rb 19 512 14 0
Rb 18 512 14 0
Rb 17 512 14 0
Rb 16 512 14 0
Rb 15 512 14 0
Rb 14 512 14 0
Rb 13 512 14 0
Rb 12 256 13 0
Rb 11 256 13 0
Rb 10 128 11 0
Rb 09 128 11 0
Rb 08 256 13 0
Rb 07 1024 15 0
Rb 06 128 11 0
Rb 05 256 13 0
Rb 04 128 11 0
Rb 03 128 11 0
Rb 02 256 13 0
Rb 01 128 11 0
Rb 00 128 11 0

Table 8. Programming of Vector 32A.

66

2. Result of Vector 32A
Sample DRFM Phase Matlab Result VHDL VHDL
IOut Qout
1 0 127+0j 127 0
2 0 254+0j 254 0
3 0 381+0j 381 0
4 0 635+0j 635 0
5 0 889+0j 889 0
6 0 1143+0j 1143 0
7 0 1270+0j 1270 0
8 1 1395+25j 1395 25
9 1 2409+505 2409 50
10 1 2661+75j 2661 75
11 1 2911+125j 2911 125
12 2 3407+199j 3407 199
13 2 3903+273j 3903 273
14 3 4390+344; 4390 344
15 3 4869+439j 4869 439
16 4 5318+728j 5318 728
17 4 5768+889j 5768 889
18 5 6207+1042j 6207 1042
19 5 6626+1264] 6626 1264
20 6 6742+1643j 6742 1643
21 7 6827+1902j 6827 1902
22 7 6742+2296) 6742 2296
23 8 6660+2619j 6660 2619
24 9 6563+3065j 6563 3065
25 10 7278+3433j 7278 3433
26 10 6968+3904j 6968 3904
27 11 6848+4246) 6848 4246
28 12 6404+4641;j 6404 4641
29 13 5897+5012j 5897 5012
30 14 5653+5304;j 5653 5304
31 15 5074+5577) 5074 5577
32 16 4392+5946j 4392 5946
33 17 3622+5992; 3622 5992
34 18 2963+6083] 2963 6083
35 19 2162+6004j 2162 6004
36 20 1293+5985j 1293 5985
37 21 558+5741j 558 5741
38 23 -215+55505 =215 5550
39 24 --845+5098j -845 5098
40 25 -1494+4682j -1494 4682
41 26 -1962+4082j -1962 4082
42 28 -2400+3539j -2400 3539
43 29 -2625+2879j -2625 2879
44 30 -2894+2275j -2894 2275
45 0 -3046+1679j -3046 1679
46 1 -2763+990j -2763 990
47 3 -2739+478j -2739 478
48 4 -2585-27] -2585 =27
49 6 -2355-454j -2355 -454
50 7 -1791-623j -1791 -623
Table 9. Result of Vector 32A.

67

The vector in Table 9 represents a straight forward approach where no overflow

was expected nor detected. Programming the range bins is slightly easier and less time

consuming when the phase increment values are set to zero.

By running the vector 50 samples deep, filled range bins throughout the design

were achieved. Table 9 represents the results of the verification in tabular form while

Figure 41 depics part of the Waveform window.

arhnPad 015

=

ar OD%in

r Oper

ar QutPad 50

ar OutPad 51

WELSO

ar QutPadl50V

ar QuPaddsn

ar OutPadis

WELS1

ar QutPadds oy

O utPad =150

Figure 41. Portion of the Wave Form Editor Displaying the Initial I (Blue) and Q (Red)

3.

Values for Vector 32A.

Programming of Vector 32B

As is shown in Table 10 Vector 32B uses the same gain, i.e., the same

multiplication as 32A. However, the addition of a phase increment creates an overflow in

some of the range bins after a certain amount of phase samples.

68

Programming of range-bins:

Rb # Multiplication | Gain Phase
Factor Code | Increment

Rb 31 128 11 0
Rb 30 128 11 0
Rb 29 128 11 1
Rb 28 256 13 1
Rb 27 256 13 2
Rb 26 256 13 1
Rb 25 128 11 1
Rb 24 128 11 2
Rb 23 1024 15 5
Rb 22 256 13 2
Rb 21 256 13 3
Rb 20 512 14 5
Rb 19 512 14 4
Rb 18 512 14 5
Rb 17 512 14 5
Rb 16 512 14 6
Rb 15 512 14 6
Rb 14 512 14 6
Rb 13 512 14 6
Rb 12 256 13 6
Rb 11 256 13 6
Rb 10 128 11 5
Rb 09 128 11 6
Rb 08 256 13 6
Rb 07 1024 15 10
Rb 06 128 11 6
Rb 05 256 13 8
Rb 04 128 11 7
Rb 03 128 11 7
Rb 02 256 13 8
Rb 01 128 11 8
Rb 00 128 11 8
Table 10. Programming of Vector 32B.

69

4. Result of Vector 32B

Sample DRFM Phase Matlab Result Tou Qout
1 0 127+0j 127 0
2 0 254+0j 254 0
3 0 379+25j 379 25
4 0 629+75j 629 75
5 0 863+173j 863 173
6 0 1113+223j 1113 223
7 0 1238+2438j 1238 248
8 1 1353+322j 1353 322
9 1 1919+1195j 1919 1195
10 1 2145+1317j 2145 1317
11 1 2341+1507; 2341 1507
12 2 2595+1999j 2595 1999
13 2 2931+2431j 2931 2431
14 3 3185+2923j 3185 2923
15 3 3425+3435j 3425 3435
16 4 3381+4067j 3381 4067
17 4 3485+4680j 3485 4680
18 5 3562+5272j 3562 5272
19 5 3565+5889j 3565 5889
20 6 3291+6314j 3291 6314
21 7 3122+6719j 3122 6719
22 7 2752+6965) 2752 6965
23 8 2407+7231j 2407 7231
24 9 1905+7566j 1905 7566
25 10 981-7780j 981 -7780
26 10 330-7623;j 330 -7623
27 11 -256-7379j -256 -7379
28 12 -1009-7375j -1009 -7375
29 13 -1769-7504; -1769 -7504
30 14 -2466-7396j -2466 -7396
31 15 -3258-7699j -3258 -7699
32 16 -4203+8159j -4203 8159
33 17 -4898+7546j -4898 7546
34 18 -5561+6960j -5561 6960
35 19 -6120+6128j -6120 6128
36 20 -6724+5057] -6724 5057
37 21 -7095+4113j -7095 4113
38 23 -7408+2904j -7408 2904
39 24 -74621850j -7462 1850
40 25 -7378+625) -7378 625
41 26 -7106-428j -7106 -428
42 28 -6655-1567j -6655 -1567
43 29 -6050-2439j -6050 -2439
44 30 -5317-3364j -5317 -3364
45 0 -4422-4096j -4422 -4096
46 1 -3356-4371j -3356 -4371
47 3 -2318-4770j -2318 -4770
48 4 -4770-4881; -4770 -4881
49 6 -230-4776j -230 -4776
50 7 562-4206j 562 -4206

70

Table 11. Result of Vector 32B.

Through the Matlab simulation, an overflow after sample 25 through 31 was
expected. A result easily detected in Table 11 above and viewed on the waveform editor

shown in Figure 42.

Name Walue |3t] 20 . m - BT SRR T SR R - RS R - R - SRR - R
0V out 1
o Oper 1
o OutPadlS i
o Oyt adISOY 0
o OutPaddso i}
o OytPaddst 0

WBLIST 7566
r QutPaddsoy 0 | |
o OgtPadvIs0 (1
o OuPadvIST, (1
A OuPad-IS2, 0 1]
rOuPad 1S3 1 T 1] [
o OQuPadvISd, 1 |
o QuPadt1Ss, 1 |]] —
o OuPad¥ISEy 0 | | | 1
o OuPadtIS? (0 |
o OuPadt1Sey 0 | [
o utPad15 9, 1 | |
o OuPad™IS108 (0]]

Figure 42. Portion of the Wave Form Editor Displaying I (Blue) and Q (Red) After Sample
25-31 and the Subsequent Overflow— OutpadQSOV (Green).

Equally successful results were obtained running the rest of the test vectors. A

100% correspondence with the expected, Matlab generated, results was obtained.

71

THIS PAGE INTENTIONALLY LEFT BLANK

72

VI. SUMMARY, CONCLUSION AND RECOMMENDATION

A. SUMMARY AND CONCLUSION

The main purpose of the research for this thesis was to find a method to perform
simulations to verify hardware design. It has been clearly demonstrated that VHDL is a
good choice of a language to model the design in order to save simulation time. Using
VHDL and Active-HDL during the simulation and verification process saved several

orders of magnitude of time.

Second, it has been shown that the VHDL version of the design acts as the
original Tanner Tools Pro design. However, a few steps have to be remembered. When
exporting the design, for instance, an attempt was made to implement bi-directional ports
but unidirectional ports had to be used. Another discovery was that VHDL did not accept
network output ports connected to inputs of other logic gates within the module. Such

cases needed to be buffered by two inverters in series.

Third, VHDL was a good choice to create “super classes” with more Range-bin
modulators than existed in the exported design. Thus, it was possible to verify the logic
of a larger design. In this thesis, a design of 32 Range-bins has been verified. Two
additional super classes of 128 and 512 Range-bins have also been programmed but not

yet tested.

Fourth, using a functional white box approach to verify the design was successful.
The algorithm developed in combination with Matlab vectors for the larger designs
proved to be a good combination.

B. RECOMMENDATION

VHDL can be used in the future work of this project. The current 128 and 512
Range-bin designs can be verified to confirm their logic as well. New VHDL designs can

easily be constructed when a new hardware design is created.

VHDL can also be used more actively, given time and resources. Currently, the
different researchers doing the hardware design have named the same entity with

different names. For instance, several inverters and other logic gates possess the same

73

functionality but with different names. This leads to Active-HDL generating “spaghetti
code”. With an early-implemented naming convention, this can be avoided. Adding a
synthesizer, from a chip vendor, to Active-HDL, would make it possible for the project to

use the VHDL design as a basis for manufacturing.

Increased cooperation with input from the Software Engineering Program, in a
project such as this, could lead to opportunities to apply model checking or other

software verification methodologies.

74

APPENDIX A. VHDL IMPLEMENTATION TUTORIAL

The purpose of this tutorial is to acquaint the reader with the methods involved in

creating a VHDL design from an externally generated source file. It also reiterates the

steps involved in library updates, naming conventions and behavior descriptions.

A. CREATING A NEW DESIGN

In this tutorial a VHDL design will be created using an externally generated

source file.

1. Start Active-HDL. When the Getting Started dialog opens, select Create

new design, click OK, Figure 43.

é " Open existing design

hb 8 b

hb 8 rh
rangehind with th
rangebind with tb
ewors

nandz2

| {* Create new design

h:hthesiz vhdlhhb_8 b

j tare designs... |

=

[Always open last design

Ok, I Cancel

Figure 43. Getting Started Window in Active-HDL.

75

2. In the New Design Wizard first window, choose Add existing resource
file, click Next, Figure 44.

MNew Design Wizard x|

Haoww would you like to create design resources?

' Add existing resource files
" Import a design from Active-CAD

™ Create an emply design

< Back I MHest » I Cancel |

Figure 44. New Design Window in Active-HDL.

3. In the New Design Wizard second window Figure 45, click Add files.

Mew Design Wizard x|

i)

5 Select resource files to be added to the design.

The fallowing fles will be added to the design:
FPath | Contents |

oA

!:h.l;i-:lu.w f o

{4

< Back I [HEwt = | Cancel |

Figure 45. New Design Window in Active-HDL.
76

Find the appropriate file, Figure 46. Double click or select and click Add.

Laak in: Iﬁ My Designs j - £ Ef-
ex0re | Firrverter
F_1 [_Ifnandz
F_Z [JfarregeL
f16bitadder Ca four_jnput_nand_1121
fadder ca fourreq_scrubbed
fadderi 2 fourreqnl30
. r *
File name: | Add
Files of type: |;a|| Files [*] . Cancel |
Open as I,.t-.,ut.;. j ¥ take local copy
e

Figure 46. Find File Window in Active-HDL.

If file is correct click Add Files, shown in Figure 47.
x

& Select resource files to be added ta the design.

The following filez will be added to the design:

Fath I Contents I
chdocuments and settingshhpber... YHDL Source ..

< Back | Mext » | Cancel |

Figure 47. Chosen File in Active-HDL.

77

6. In the next window,Figure 48, make sure HDL is the Block Diagram
Configuration. If other implementation tools are in use, check appropriate ones. In this

tutorial, the default settings should be correct, click Next.

New Design Wizard |

Specify additional information about the new design,

— Spnthesiz ool

I Lrone: j

r— Implementation taal:

I Lrone: j

| N
Drefault Family: I_ 'I

Block Diagram Configuration; |HOL A

Default HOL Language: IVHDL 'I

< Back I et = I Cancel |

Figure 48. Configuration of Active-HDL.

7. The new design is displayed with its address in Figure 49.

New Design Wizard |

Specify basic infarmation about the new design.

Type the design name:
ITutoriaI_VHDLI

Select the location of the design folder:

I-::\my_designs\

Browse. . |

The name of the default working library of the design:
ITutoriaI_VHDL
The name specified here will be used az the file name for

the librany filez and az the logical name of the libram. Y'ou
can change the logical name later on.

< Back I et I Cancel |

Figure 49. File Information in Active-HDL.

78

8. Specifications for the new design: make sure Compile source files after

creation is checked in Figure 50. Click Finish.

Mew Design Wizard x|

The new design will have the following specifications:

Degign name: Tutonal ¥HOL ;I
The following files will be added ta the desigh:

c:hdocuments and settingshhpbergont.desktophdtm,

-
1| | 3

;' Design directony:
i)
oy designsh

¥ Compile source files after creation

< Back I Finizh I Cancel

Figure 50. Design Specifications in Active-HDL.

0. At this point, the new design is launched. Note that the source file is

compiled but that it contains errors. The errors in this example stem from three different

sources:
o Lack of Library addition to each entity
. Lack of behavioral implementation to applicable entities
o Faulty component names

Depending on the file size, the errors may be more or less frequent. Each
incorrect programming may also lead to more than one specific error.

Figure 51 will address these errors.

79

My_Designs', Tutorial_¥HD! dtm_8rbps.vhd =1
Eile Edt Search ‘iew Design Simulation Tools window Help r W ox

| B-SHd|zn @F ILHrom P be 88| mp w1 » |5

Mo simulation ‘

I 4 Bl ot Sl @] 6% % %]
ITop-Leve\ selection j
Urgaias] | 1 LIBRLRY IEEE; g
Bl = USE IEEE.std_logic_1164.all;
£ Add New File i
1 dtm_srbps.vhd 2 —— %%« DTM NFET-Z7x model *+*€*%
fffl Tutorial_vHDL library N - external ports
& ENTITY DTM WFET-Z'.
o B : IN std logic;
= D : OUT std logic;
= G i IN std legic:
10 5 : IN std logic
11 :
12 END DTHM_NFET-27x;
13
14 -- internal bekavior
15 ARCHITECTURE hehavioral OF DTHM NFET-27x IS
16 -- TODO: user must define behavior of VHDL 1 itives
17 END behavioral;
18
19 —— *#*%* DTM PFET-27x model *
20 -- external ports
21 ENTITY DTN PFET-27x IS PORT |
2 B : IN std logic;
23 D : OUT std logic;
24 G i IN std legic:
25 5 : IN std logic
26 H
27 END DTHM_PFET-27x;
o=
|
|2l Files /%FStruc...; 3Reso... B design flow ;= dtm_Brbps

=

no Er c.
expected.

Error: COMPS6_0018: dem Srhps.vhd : (6, : Eeyword "end"
Error: COMPS6_0015: dem Srhps.vhd : {6, 16): ';' esxpected.
Error: COMPS6_0016: dom Srhps.vhd : (6, 17): Design unit declaracion sxpected.
Compile Architecture "behavioral”™ of Encicy "DTH_NFET"

Error: COMPEE_001%: deow_Srbps.vhd @ (15, 36): Eeyword "is" expected.
Error: CONPE6_001%: dem_Srhps.vhd 115, 36): Eeyword "hegin™ expected.

Error: COMPSG_0016: dem_Srbps.vhd @ (15, 37): Design unit declaration expected.
Compile Entity "DTH_PFET"
Fryor: COMPSA O019: drw frhns.ovhd = (21 161 Eeggord "is" exnecred =|

B Console

o[| e D EEE2A YOO ES 0 al || ormea, | @]thesisb...|[§ active .. [Erorosof...| Fmbe .. | @i, | TS GOBL R 1299

Figure 51. Active-HDL Design Launched from External Source File. Initial Errors
According to Previous Page.

10. After all errors have been corrected, the file compiles correctly and it is

now possible to open waveforms or create block diagrams.

80

APPENDIX B. TEST BENCH GENERATION TUTORIAL

In order to more easily test specific input signals, a test bench should be created.
Usually, the user performs the functional simulation and defines test vectors required to
verify operation of the design before generating a test bench. This tutorial will use a
saved waveform file to generate the test bench, and then perform the functional

simulation using the test bench macro.
After creating a waveform, running a simulation and saving the waveform:

1. Right-click the top-level design entity shown in Figure 52, and then

choose Generate Test Bench from the shortcut menu to start the Test Bench Wizard.

a— ot m_arm e

& /KMK_LUT_ADDRESS.bde

o S EME_MANDS bde

& JKMK_LUT_DECODER_MODULE, b
& JEME_LUT_DECODER. bde

- JEME_LUTS . bde

He- . f Ci5_RangeBinModulator, bde

Iél- S CG_RangeBinModulatar ,vhd

@
= Waveform Editor 2.aw B view Source
EEI'If‘ Rangebinl library & Set as Top-Level

Generate TestBench

1 I I Add Mew Architecture. ..
2l Files /$FStructure; . Edi Symbol

Copy Declaration Chrl+C
Design: 1:12 PM,—TUESOEY, EUQUSL 20,

Figure 52. Test Bench Generation in Active-HDL.

81

For most purposes, select Single Process and click next in Figure 53.

Test Bench Generator Wizard x|

Select the dezign unit far which you want to generate a
test bench. The wizard will generate appropriate source
files and a macra file for the test bench,

E ruity:

Architecture;

structural j

Test Bench Type:

¥ Singls Process
= WwWithES Based

< Back I Mewt = I Cancel | Help |

Figure 53. Test Bench Generation in Active-HDL.

Chose Test vectors from file, click Browse in Figure 54.

Test Bench Generator Wizard x|

Define kest vectors.

¥ Test vectors from file

Select this check bow if you want to uge previously
created test vectars saved in a waveform file.

Select a test vector file:

Signals found in file; UUT ports:
: T i’
=4 11

e I;i-:lu..tl—i-'

= 10,
LT
T2

113, |

< Back | Mewt » I Cancel | Help |

Figure 54. Test Bench Generation in Active-HDL.

82

4,

5.

Chose appropriate, saved waveform in Figure 55, click Open.
open 2| x|
Lok in: I'ﬁsrﬂ j - I'j{ -

T waveform Editor 2
2 waveform Editar Testl

File name: | Open I
Files of bype: Iwavefnrm files [+ 2w j Cancel |

’?: L

Figure 55. Test Bench Generation in Active-HDL.

Click, Next in Figure 56.

Test Bench Generator Wizard x|

Define test vectars.

v Test vectors from file

Select thiz check bow if pou want to uze previously
created test vectors zaved in a wavebarm file.

Select a test vectar file:
IE:'\M_I.J_Designs'\FHangebin‘l Sarchieaveform Editor 2. awt

Signalz found in file; LT ports:;
. CLK 104 ﬂ
Syeraunn O0Vin 1T
Dzmm DII'ET 10N
= |PSY 111
IRE 112
kD Jd |
< Back | Mext > | Cancel | Help |

Figure 56. Test Bench Generation in Active-HDL.

83

6. Edit name or use default in Figure 57, click, Next.

Test Bench Generator Wizard

Enter the tegt bench specification.

Type the name of the test bench entity:

g _rangebinmodulator th

Type the name of the test bench architecture:
ITB_AHCHITEETUFEE

Type the name of the tegt bench zource file:

zq_rangehinmodulator_TE vhd

B by

. Tupe the name of the folder for test bench files:

Browse |

ITestBench

< Back I Mest » I Cancel | Help

Figure 57. Test Bench Generation in Active-HDL.

7. Click Finish in Figure 58.

Test Bench Generator Wizard

The wizard iz ready to generate test bench files.

The following files will be generated:

— Test bench file[s):
AarchTestBenchhog_rangebinmodulator_TE. vhd

r— File with configuration for timing simulation:
A... hog_rangebinmodulator_TB_tim_cfg.whd

[~ Generate

r— Simulation macro [DO file):
%... \eg_rangebinmodulator_TE_runtest.do

< Back I Finizh I Cancel | Help

Figure 58. Test Bench Generation in Active-HDL.

84

8.

|

Figure 59. Test Bench Generation in Active-HDL.

Changes in the test bench are implemented in the test bench file. Initially, it will
resemble the waveform used during generation, but it can be manually changed and

executed again and again. Each time a new wave form is created it can be saved for

#ifii Rangebini library

The testbench is now complete and its file icon is shown in Figure 59.

o/ EME_LUTS. bde
=HE=.f Ci5_PangeBinModulator bde
Iél- JCiE_RangeBintodulator . vhd
La cd_rangebinmodulakar (=
T Waveform Editor 2,awf
4 TestBench
g ./ cg_rangebinmodulator _TE. vl

& cq_rangebinmodulator_TE p

| rll

future reference. The test bench is run by executing its macro.

85

THIS PAGE INTENTIONALLY LEFT BLANK

86

APPENDIX C. TOP-LEVEL VHDL CODE FOR A 1-BIT ADDER

-- Title

-- Design : Rangebinl

-- Author : Hakan Bergon
-- Company : NPS

-- File :
c:\My_Designs\Rangebinl\compile\DJF 1BitAd
der.vhd

-- Generated : Mon May 20 16:38:22
2002

-- From :
c¢:\My_Designs\Rangebinl\src\DJF _1BitAdder.b
de

-- By : Bde2Vhdl ver. 2.01

-- Description :

-- Design unit header --
LIBRARY IEEE;
USE IEEE.std logic 1164.all;

entity DJF_1BitAdder is
port(
A :in std_logic;
B :instd logic;
Ci: in std_logic;
\~A\: in std_logic;
\~B\ : in std_logic;
S : out std_logic);
end DJF_1BitAdder;

architecture structural of
DJF_1BitAdder is
---- Component declarations -----
component DJF Buffer
port (
Bufln : in STD _LOGIC;
BufOut : out STD_LOGIC);
end component;
component DJF Inv_1x
port (
\In\ : in STD_LOGIC;
\Out\ : out STD_LOGIC);
end component;

component DJF PassGate 1x
port (
Con : in STD_LOGIC;
ConNot : in STD_LOGIC;
\In\: in STD_LOGIC;
\Out\ : out STD_LOGIC);

87

end component;

---- Signal declarations used on the

diagram ----

signal N1 : std_logic;
signal N16 : std_logic;
signal N17 : std_logic;
signal N2 : std_logic;
signal N20 : std_logic;

begin

---- Component instantiations ----
DJF Buffer 1:DJF Buffer
port map(
Bufln => N2,
BufOut => S);

\DJF Inv-1x_1\: DJF Inv_1x
port map(
\In\ => Ci,
\Out\ => N17);

\DJF Inv-1x 2\:DJF Inv Ix
port map(
\In\ => N20,
\Out\ => N16);

\DJF Inv-1x 3\:DJF Inv_1x
port map(
\In\ => N1,
\Out\ => N20);

\DJF PassGate-1x_1\:

DJF PassGate 1x

port map(
Con =>N17,
ConNot => Ci,
\In\ => N20,
\Out\ => N2);

\DJF PassGate-1x_2\:

DJF PassGate 1x

port map(
Con => (i,
ConNot =>N17,
\In\ => N16,
\Out\ => N2);

\DJF PassGate-1x_3\:

DJF PassGate 1x

port map(

Con => \~A\,
ConNot => A,
\In\ => \~B\,
\Out\ =>N1);

\DJF PassGate-1x_4\:

DJF PassGate Ix
port map(
Con=> A,
ConNot => \~A\,
\In\=> B,
\Out\ => N1);

88

end structural;

APPENDIX D. VHDL CODE FOR THE SINGLE RANGE BIN

A. TOP LEVEL VHDL CODE
I5 : in std_logic;

-- Title : 16 : in std_logic;
-- Design : Rangebinl 17 : in std_logic;
-- Author : Hakan Bergon I8 : in std_logic;
-- Company :NPS 19 :in std_logic;

- IOV : in std_logic;
IncO : in std_logic;
- Incl : in std_logic;

--File: Inc2 : in std_logic;
c:\My_Designs\Rangebinl\compile\CG RangeB Inc3 : in std_logic;
inModulator.vhd Inc4 : in std_logic;

-- Generated: Mon May 20 16:39:08 ODVin : in std_logic;
2002 Oper : in std_logic;

--From: PRB :in std _logic;
c¢:\My_Designs\Rangebinl\src\CG_RangeBinMo PSV :in std_logic;

dulator.bde QO : in std_logic;
-- By : Bde2Vhdl ver. 2.01 QI :in std_logic;
- Q10 : in std_logic;
Q11 :in std _logic;
- Q12 :in std logic;
-- Description : Q13 :instd_logic;
-- Q14 :in std_logic;
Q15 :in std_logic;

-- Design unit header -- Q2 :in std_logic;
LIBRARY IEEE; Q3 :instd_logic;
USE IEEE.std_logic 1164.all; Q4 :in std_logic;
Q5 :in std_logic;

entity CG_RangeBinModulator is Q6 : in std _logic;
port(Q7 :in std_logic;
CLK : in std_logic; Q8 :in std_logic;
DRFMO : in std logic; Q9 :in std _logic;

DRFMLI : in std_logic;
DRFM?2 : in std_logic;
DRFM3 : in std_logic;
DRFM4 : in std_logic;
GainO : in std_logic;
Gainl : in std_logic;
Gain2 : in std_logic;
Gain3 : in std_logic;
10 : in std_logic;

I1 : in std_logic;

110 : in std_logic;

I11 : in std_logic;

112 : in std_logic;

113 : in std_logic;

114 : in std_logic;

115 : in std_logic;

12 :in std_logic;

I3 : in std_logic;

14 : in std_logic;

89

QOV :in std_logic;
UNP : in std_logic;
URB : in std_logic;
\~I0\ : in std_logic;
\~I10\: in std_logic;
\~I11\: in std_logic;
\~I12\ : in std_logic;
\~I13\: in std_logic;
\~114\ : in std_logic;
\~I15\: in std_logic;
\~I1\ : in std_logic;
\~I2\ : in std_logic;
\~I3\ : in std_logic;
\~14\ : in std_logic;
\~I5\ : in std_logic;
\~16\ : in std_logic;
\~I7\: in std_logic;
\~I8\ : in std_logic;
\~I9\ : in std_logic;

\~QO\ : in std_logic; \~IS14\ : out std_logic;

\~Q10\ : in std_logic; \~IS15\ : out std_logic;
\~QI11\: in std_logic; \~ISI\ : out std_logic;
\~Q12\: in std_logic; \~IS2\ : out std_logic;
\~Q13\: in std_logic; \~IS3\ : out std_logic;
\~Q14\ : in std_logic; \~IS4\ : out std_logic;
\~QI15\ : in std_logic; \~IS5\ : out std_logic;
\~QI\: in std_logic; \~IS6\ : out std_logic;
\~Q2\ : in std_logic; \~IS7\ : out std_logic;
\~Q3\: in std_logic; \~IS8\ : out std_logic;
\~Q4\ : in std_logic; \~IS9\ : out std _logic;
\~Q5\ : in std_logic; \~QSO0\ : out std_logic;
\~Q6\ : in std_logic; \~QS10\ : out std_logic;
\~Q7\: in std_logic; \~QS11\: out std_logic;
\~Q8\ : in std_logic; \~QS12\ : out std_logic;
\~Q9\ : in std_logic; \~QS13\: out std_logic;
ISO : out std_logic; \~QS14\ : out std_logic;
IS1 : out std_logic; \~QS15\ : out std_logic;
IS10 : out std_logic; \~QS1\ : out std_logic;
IS11 : out std_logic; \~QS2\ : out std_logic;
IS12 : out std_logic; \~QS3\: out std_logic;
IS13 : out std_logic; \~QS4\ : out std_logic;
IS14 : out std_logic; \~QS5\ : out std_logic;
IS15 : out std_logic; \~QS6\ : out std_logic;
IS2 : out std_logic; \~QS7\ : out std_logic;
IS3 : out std_logic; \~QS8\ : out std_logic;
IS4 : out std_logic; \~QS9\ : out std_logic
IS5 : out std_logic;);

IS6 : out std_logic; end CG_RangeBinModulator;
IS7 : out std_logic;

IS8 : out std_logic; architecture structural of
IS9 : out std_logic; CG_RangeBinModulator is

ISOV : out std_logic;

ODVout : out std_logic; ---- Component declarations -----
QSO0 : out std_logic;

QS1 : out std logic; component CG_5SbitAdder 1x
QS10 : out std_logic; port (

QSI11 : out std_logic; A0 :in STD _LOGIC,;
QS12 : out std_logic; Al :in STD _LOGIC,;
QS13 : out std_logic; A2 :in STD LOGIC;
QS14 : out std_logic; A3 :in STD LOGIC,
QS15 : out std_logic; A4 :in STD LOGIC,
QS2 : out std_logic; B0 :in STD_LOGIC;
QS3 : out std_logic; B1:in STD_LOGIC;
QS4 : out std_logic; B2 :in STD_LOGIC;
QS5 : out std_logic; B3 :in STD_LOGIC;
QS6 : out std_logic; B4 :in STD_LOGIC;
QS7 : out std_logic; \~AO0\: in STD LOGIC;
QS8 : out std_logic; \~A1\:in STD_LOGIC;
QS9 : out std_logic; \~A2\:in STD_LOGIC;
QSOV : out std_logic; \~A3\:in STD_LOGIC;
\~ISO\ : out std_logic; \~A4\:in STD LOGIC;
\~IS10\ : out std_logic; \~BO\ : in STD LOGIC;
\~ISTI\ : out std_logic; \~BI\:in STD LOGIC;
\~IS12\ : out std_logic; \~B2\:in STD LOGIC;
\~IS13\ : out std_logic; \~B3\:in STD LOGIC;

90

\~B4\ : in STD_LOGIC; \~Q11\: out STD_LOGIC;

S0 : out STD_LOGIC; \~Q12\: out STD LOGIC;
S1:out STD LOGIC; \~Q13\: out STD LOGIC;
S2 : out STD LOGIC; \~Q14\ : out STD LOGIC;
S3 : out STD LOGIC; \~Q15\: out STD LOGIC;
S4 : out STD LOGIC \~Q16\ : out STD_LOGIC;
); \~QI\: out STD_LOGIC;
end component; \~Q2\ : out STD_LOGIC;
component CG_Clock \~Q3\ : out STD LOGIC;
port (\~Q4\ : out STD LOGIC;
CLK :in STD LOGIC; \~Q5\: out STD_LOGIC;
CLK1 : out STD_LOGIC; \~Q6\ : out STD_LOGIC;
CLK2 : out STD_LOGIC \~Q7\ : out STD LOGIC;
); \~Q8\ : out STD_LOGIC;
end component; \~Q9\ : out STD LOGIC
component CG_DMSFFPGregl7 1x);
port (end component;
CLK : in STD LOGIC; component CG_ DMSFFPGreg5 1x
CLR :in STD_LOGIC,; port (
DO :in STD LOGIC; CLK :in STD LOGIC;
D1 :in STD LOGIC; DO : in STD_LOGIC;
D10 :in STD LOGIC; D1 :in STD_LOGIC;
D11 :in STD LOGIC; D2 :in STD LOGIC;
D12 :in STD LOGIC; D3 :in STD LOGIC;
D13 :in STD LOGIC; D4 :in STD LOGIC;
D14 :in STD_LOGIC; LD :in STD LOGIC;
D15 :in STD LOGIC; QO : out STD LOGIC;
D16 :in STD LOGIC; Q1 :out STD LOGIC;
D2 :in STD_LOGIC; Q2 : out STD LOGIC;
D3 :in STD_LOGIC; Q3 : out STD LOGIC;
D4 :in STD_LOGIC; Q4 : out STD LOGIC;
D5 :in STD_LOGIC; \~QO\ : out STD_LOGIC;
D6 : in STD_LOGIC; \~QI\: out STD_LOGIC;
D7 :in STD LOGIC; \~Q2\ : out STD LOGIC;
D8 :in STD LOGIC; \~Q3\ : out STD LOGIC;
D9 :in STD LOGIC; \~Q4\ : out STD LOGIC
LD :in STD LOGIC;);
QO : out STD_LOGIC; end component;
Ql : out STD_LOGIC; component CG_ DMSFFPGreg8 1x
Q10 : out STD _LOGIC; port (
Q11 : out STD _LOGIC; CLK :in STD_LOGIC;
Q12 : out STD _LOGIC; DO : in STD _LOGIC;
Q13 : out STD LOGIC; D1 :in STD_LOGIC;
Q14 : out STD LOGIC; D2 :in STD_LOGIC;
Q15 : out STD LOGIC; D3 :in STD LOGIC;
Q16 : out STD LOGIC; D4 :in STD LOGIC;
Q2 : out STD_LOGIC; D5 :in STD_LOGIC;
Q3 : out STD_LOGIC; D6 : in STD_LOGIC;
Q4 : out STD_LOGIC; D7 :in STD LOGIC;
Q5 : out STD_LOGIC; LD :in STD LOGIC;
Q6 : out STD_LOGIC; QO : out STD_LOGIC;
Q7 : out STD_LOGIC; QI : out STD_LOGIC;
Q8 : out STD_LOGIC; Q2 : out STD_LOGIC;
Q9 : out STD_LOGIC; Q3 : out STD_LOGIC;
\~QO\ : out STD_LOGIC; Q4 : out STD LOGIC;
\~Q10\: out STD LOGIC; Q5 :out STD LOGIC;

91

Q6 : out STD_LOGIC; \~Q9\ : out STD_LOGIC

Q7 : out STD_LOGIC;);
\~QO\ : out STD_LOGIC; end component;
\~Q1\ : out STD LOGIC; component CG_Gain_Shifter 1x
\~Q2\: out STD LOGIC; port (
\~Q3\: out STD_LOGIC; Gain0 : in STD_LOGIC;
\~Q4\ : out STD_LOGIC; Gainl : in STD_LOGIC;
\~Q5\: out STD_LOGIC; Gain2 : in STD_LOGIC;
\~Q6\ : out STD LOGIC; Gain3 : in STD _LOGIC,;
\~Q7\ : out STD_LOGIC 10 : in STD_LOGIC;
); I1 : in STD_LOGIC;
end component; 12 :in STD_LOGIC;
component I3 :in STD_LOGIC;
CG_DMSFFPG_CLRregl3 1x 14 :in STD_LOGIC;
port (I5 :in STD_LOGIC;
CLK :in STD LOGIC; 16 : in STD_LOGIC;
CLR :in STD_LOGIC,; 17 :in STD_LOGIC;
DO : in STD_LOGIC; \~Gain0\ : in STD_LOGIC;
D1 :in STD_LOGIC; \~Gainl\ : in STD_LOGIC;
D10 :in STD LOGIC; \~Gain2\ : in STD_LOGIC;
D11 :in STD LOGIC; \~Gain3\ : in STD_LOGIC;
D12 :in STD LOGIC; 010 : out STD_LOGIC;
D2 :in STD LOGIC; O11 : out STD LOGIC;
D3 :in STD LOGIC; 012 : out STD LOGIC;
D4 :in STD LOGIC; 013 : out STD LOGIC;
D5 :in STD_LOGIC; 014 : out STD LOGIC;
D6 : in STD_LOGIC; 015 : out STD LOGIC;
D7 :in STD_LOGIC; 016 : out STD_LOGIC;
D8 :in STD_LOGIC; 017 : out STD_LOGIC;
D9 :in STD_LOGIC; 05 : out STD LOGIC;
LD :in STD_LOGIC; 06 : out STD_LOGIC;
QO : out STD_LOGIC; O7 : out STD_LOGIC;
Q1 : out STD_LOGIC; 08 : out STD_LOGIC;
Q10 : out STD LOGIC; 09 : out STD LOGIC
Q11 : out STD_LOGIC;);
Q12 : out STD_LOGIC; end component;
Q2 : out STD_LOGIC; component CG_RangeBinControl
Q3 : out STD_LOGIC; port (
Q4 : out STD_LOGIC; CLK :in STD_LOGIC;
Q5 : out STD_LOGIC; ODVin : in STD_LOGIC,
Q6 : out STD _LOGIC; Oper : in STD_LOGIC,;
Q7 :out STD_LOGIC; PSV :in STD LOGIC;
Q8 : out STD LOGIC; URB :in STD_LOGIC;
Q9 : out STD LOGIC; CLR13 : out STD LOGIC;
\~QO\ : out STD_LOGIC; CLR17 : out STD_LOGIC;
\~Q10\: out STD LOGIC; ODVout : out STD_LOGIC
\~QI11\: out STD_LOGIC;);
\~Q12\: out STD LOGIC; end component;
\~Q1\ : out STD LOGIC; component DJF _16BitAdder
\~Q2\ : out STD LOGIC; port (
\~Q3\ : out STD LOGIC; A0 :in STD _LOGIC,;
\~Q4\ : out STD LOGIC; Al :in STD _LOGIC,;
\~Q5\ : out STD_LOGIC; A10:in STD LOGIC;
\~Q6\ : out STD_LOGIC; All :in STD LOGIC;
\~Q7\ : out STD_LOGIC; Al12:in STD LOGIC;
\~Q8\ : out STD_LOGIC; Al13:in STD LOGIC;

92

Al4:in STD LOGIC; \~B6\ : in STD_LOGIC;

Al15:in STD _LOGIC; \~B7\: in STD LOGIC;
A2 :in STD LOGIC; \~B8\: in STD LOGIC;
A3 :in STD LOGIC; \~B9\: in STD LOGIC;
A4 :in STD LOGIC; C16 : out STD_LOGIC;
A5 :in STD_LOGIC; OFout : out STD_LOGIC;
A6 :in STD_LOGIC,; SO : out STD_LOGIC;
A7:in STD_LOGIC,; S1:out STD LOGIC;
A8 :in STD _LOGIC; S10: out STD_LOGIC;
A9 :in STD _LOGIC; S11:out STD_LOGIC;
B0 :in STD LOGIC; S12 : out STD_LOGIC;
B1:in STD LOGIC; S13 : out STD_LOGIC;
B10:in STD_LOGIC; S14 : out STD LOGIC,;
B11 :in STD LOGIC; S15 : out STD LOGIC;
B12:in STD LOGIC; S2 : out STD LOGIC;
B13 :in STD LOGIC; S3 : out STD LOGIC;
B14 :in STD_LOGIC; S4 : out STD LOGIC;
B15:in STD _LOGIC; S5 :out STD LOGIC;
B2 :in STD_LOGIC; S6 : out STD LOGIC;
B3 :in STD LOGIC; S7 : out STD LOGIC;
B4 :in STD LOGIC; S8 : out STD LOGIC;
B5 :in STD LOGIC; S9 : out STD_LOGIC
B6:in STD LOGIC;);

B7:in STD LOGIC; end component;

B8 :in STD LOGIC; component Gnd

B9 :in STD_LOGIC; port (

CO0 : in STD_LOGIC; Gnd : out STD_LOGIC
OFin : in STD_LOGIC;);

\~AO0\ : in STD_LOGIC; end component;

\~A10\: in STD LOGIC; component KMK LUTS
\~A11\:in STD LOGIC; port (

\~A12\:in STD_LOGIC; A0 :in STD LOGIC;
\~A13\:in STD_LOGIC; Al :in STD LOGIC;
\~A14\:in STD LOGIC; A2 :in STD LOGIC;
\~A15\:in STD_LOGIC; A3 :in STD LOGIC;
\~A1\:in STD LOGIC; A4 :in STD LOGIC;
\~A2\:in STD LOGIC; COSO : out STD_LOGIC;
\~A3\:in STD LOGIC; COSI1 : out STD_LOGIC;
\~A4\:in STD LOGIC; COS2 : out STD_LOGIC;
\~A5\:in STD_LOGIC; COS3 : out STD_LOGIC;
\~A6\: in STD_LOGIC; COS4 : out STD LOGIC;
\~A7\:in STD_LOGIC; COS5 : out STD _LOGIC;
\~A8\:in STD_LOGIC; COS6 : out STD_LOGIC;
\~A9\:in STD_LOGIC; COS7 : out STD_LOGIC;
\~BO\ : in STD LOGIC; SINO : out STD_LOGIC;
\~B10\: in STD LOGIC; SINI : out STD LOGIC;
\~B11\:in STD_LOGIC; SIN2 : out STD_LOGIC;
\~B12\: in STD _LOGIC; SIN3 : out STD_LOGIC;
\~B13\:in STD_LOGIC; SIN4 : out STD_LOGIC;
\~B14\: in STD_LOGIC; SINS : out STD_LOGIC;
\~B15\:in STD_LOGIC; SING : out STD_LOGIC;
\-B1\: in STD LOGIC,; SIN7 : out STD_LOGIC
\~B2\: in STD LOGIC,;);

\~B3\:in STD LOGIC; end component;

\~B4\ : in STD LOGIC;
\~B5\: in STD_LOGIC;

93

---- Signal declarations used on the

diagram ----

signal LogGnd : std_logic;

signal N1 : std_logic;

signal N10 :

signal N100 :

signal N101

signal N102 :
signal N103 :
signal N104 :
signal N105 :
signal N106 :
signal N107 :
signal N108 :
signal N109 :

signal N11 :

signal N110 :

signal N111

signal N112 :
signal N113 :
signal N114 :
signal N115 :
signal N116 :
signal N117 :
signal N118 :
signal N119 :

signal N12 :

signal N120 :

signal N121

signal N122 :
signal N123 :
signal N124 :
signal N125 :
signal N126 :
signal N127 :
signal N128 :
signal N129 :

signal N13 :

signal N130 :

signal N131

signal N132 :
signal N133 :
signal N134 :
signal N135 :
signal N136 :
signal N137 :
signal N138 :
signal N139 :

signal N14 :

signal N140 :

signal N141

signal N142 :
signal N143 :
signal N144 :
signal N145 :

std_logic;

std_logic;
: std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
: std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
: std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
: std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
: std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

94

signal N146 :
signal N147 :
signal N148 :
signal N149 :

signal N15 :
signal N150
signal N151
signal N152
signal N16 :
signal N17 :
signal N18 :
signal N187
signal N188
signal N189
signal N19 :

signal N190 :

signal N191

signal N192 :
signal N193 :
signal N194 :
signal N195 :
signal N196 :
signal N197 :
signal N198 :
signal N199 :

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

: std_logic;
: std_logic;
: std_logic;
std_logic;

std_logic;

std_logic;

: std_logic;
: std_logic;
: std_logic;
std_logic;

std_logic;
. std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

signal N2 : std_logic;

signal N20 :

signal N200 :

signal N201

signal N202 :
signal N203 :
signal N204 :
signal N205 :
signal N206 :
signal N207 :
signal N208 :
signal N209 :

signal N21 :

signal N210 :

signal N211

signal N212 :
signal N213 :
signal N214 :
signal N215 :
signal N216 :
signal N217 :
signal N218 :

signal N22 :

signal N220 :

signal N221

signal N222 :
signal N223 :
signal N224 :
signal N225 :
signal N226 :
signal N227 :

std_logic;

std_logic;
:std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
:std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
:std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

signal N228
signal N229
signal N23 :
signal N230
signal N231
signal N232
signal N24 :
signal N25 :
signal N26 :

signal N263 :
signal N264 :
signal N265 :
signal N266 :
signal N267 :
signal N268 :
signal N269 :

signal N27 :

signal N270 :

signal N271

signal N272 :
signal N273 :
signal N274 :
signal N275 :
signal N277 :
signal N278 :
signal N279 :

signal N28 :

signal N280 :

signal N281

signal N282 :
signal N283 :
signal N284 :
signal N285 :
signal N286 :
signal N287 :
signal N288 :
signal N289 :

: std_logic;
: std_logic;
std_logic;

: std_logic;
: std_logic;
: std_logic;
std_logic;

std_logic;

std_logic;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
: std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
: std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

signal N29 : std_logic;
signal N3 : std_logic;
signal N30 : std_logic;
signal N306 : std_logic;
signal N31 : std_logic;
signal N32 : std logic;
signal N33 : std_logic;
signal N339 : std_logic;
signal N34 : std_logic;
signal N344 : std_logic;
signal N345 : std_logic;
signal N346 : std_logic;
signal N347 : std_logic;
signal N348 : std_logic;
signal N349 : std_logic;
signal N35 : std_logic;
signal N350 : std_logic;
signal N351 : std_logic;
signal N352 : std_logic;

95

signal N36 :
signal N37 :
signal N38 :
signal N39 :

signal N4 :

signal N40 :

signal N41

signal N42 :
signal N43 :
signal N44 :
signal N45 :
signal N46 :
signal N47 :
signal N48 :
signal N49 :

signal N5 :

signal N50 :

signal N51

signal N52 :
signal N53 :
signal N54 :
signal N55 :
signal N56 :
signal N57 :
signal N58 :
signal N59 :

signal N6 :

signal N60 :

signal N61

signal N62 :
signal N63 :
signal N64 :
signal N65 :
signal N66 :
signal N67 :
signal N68 :
signal N69 :

signal N7 :

signal N70 :

signal N71

signal N72 :
signal N73 :
signal N74 :
signal N75 :
signal N76 :
signal N77 :
signal N78 :
signal N79 :

signal N8 :

signal N8O :

signal N§1

signal N82 :
signal N83 :
signal N84 :
signal N85 :
signal N86 :

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
: std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
: std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
: std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
: std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
: std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

signal N87 : std_logic; A9 =>Q09,

signal N88 : std_logic; B0 =>N232,
signal N&9 : std logic; B1=>N231,
signal N9 : std_logic; B10=>N222,
signal N90 : std logic; B11 =>N221,
signal N91 : std_logic; B12 =>N220,
signal N92 : std_logic; B13 => N220,
signal N93 : std_logic; B14 => N220,
signal N94 : std_logic; B15 =>N220,
signal N95 : std_logic; B2 =>N230,
signal N96 : std_logic; B3 =>N229,
signal N97 : std_logic; B4 =>N228,
signal N98 : std logic; B5 =>N227,
signal N99 : std_logic; B6 =>N226,
B7 =>N225,
begin B8 =>N224,
B9 =>N223,
---- Component instantiations ---- C0 =>LogGnd,
Cl16 =>N11,
CG_Clock 1:CG_Clock OFin => QOV,
port map(OFout =>N73,
CLK => CLK, S0 =>N203,
CLK1 =>N152, S1=>N204,
CLK2 =>N43 S10=>N210,
); S11 =>N209,
S12 =>N208,
CG_RangeBinControl 1 : S13 =>N207,
CG_RangeBinControl S14 =>N206,
port map(S15=>N205,
CLK =>N43, S2 =>N218,
CLR13 =>N44, S3 =>N217,
CLR17 =>N339, S4 =>N216,
ODVin => ODVin, S5=>N215,
ODVout => ODVout, S6 =>N214,
Oper => Oper, S7=>N213,
PSV =>PSV, S8 =>N212,
URB =>N352 S9 =>N211,
); \~AO\ =>\~Q0\,
A 10\ =>\~Q10\,
DJF_16BitAdder 1 : DJF_16BitAdder WATIN=>\~Q11)\,
port map(\~A12\ =>\~Q12\,
A0 =>QO0, \~A13\=>\~Q13\,
Al=>Ql, A4\ =>\~Q14\,
A10=>Q10, AT\ =>\~QI5\,
All=>Qll, AT\ =>\~QI\,
Al12=>Ql12, A2\ =>\~Q2\,
Al13=>Ql13, \~A3\ =>\~Q3\,
Al4=>Ql4, A4\ =>\~Q4\,
Al15=>Q15, \~AS\ =>\~Q5\,
A2 =>Q2, \~A6\ =>\~Q0\,
A3 =>Q3, AT\ =>\~Q7\,
A4 =>(Q4, \~A8\ =>\~Q8\,
AS=>Q)5, \~A\ =>\~Q9\,
A6 =>Q6, \~BO\ => N42,
A7T=>Q7, \~B10\ => N32,
A8 =>Q8, \~B11\=>N31,

96

S10=>N194,

)

\~B12\ => N30, S11=>N193,
\~B13\ => N30, S12 =>N192,
\~B14\ => N30, S13=>N191,
\~B15\ => N30, S14 =>N190,
\~B1\=>N41, S15=>N189,
\~B2\ => N40, S2 =>N202,
\~B3\ =>N39, S3 =>N201,
\~B4\ => N38, S4 =>N200,
\~B5\ =>N37, S5 =>N199,
\~B6\ => N36, S6 =>N198,
\~B7\ =>N35, S7=>N197,
\~B8\ => N34, S8 =>N196,
\~B9\ => N33 S9 =>N195,
); \~A O\ =>\~10\,
\~A 10\ =>\~110\,
DJF 16BitAdder 2 : DJF 16BitAdder WATIN=>\~111),
port map(\~A12\ =>\~]12\,
A0 =>10, \~A13\ =>\~13\,
Al =>11, A4\ =>\~114\,
A10=>110, \~A15\ =>\~115\,
All=>111, AT =>\~1),
Al2=>112, \~A2\ =>\~12)\,
Al3=>113, \~A3\ =>\~13)\,
Al4=>114, \~A4\ =>\~14)\,
Al5=>115, \~AS\ =>\~15),
A2 =>12, \~A6\ =>\~16\,
A3 =>13, AT\ =>\~17)\,
A4 =>14, \~A8\ =>\~18\,
A5 =>15, \~A\ =>\~19\,
A6 =>16, \~BO\ => N274,
AT =>117, \~B10\ => N264,
A8 =>18, \~B11\=>N263,
A9 =>19, \~B12\ => N289,
B0 => N288, \~B13\ =>N289,
B1 =>N287, \~B14\ => N289,
B10 => N278, \~B15\ =>N289,
B11=>N277, \~B1\=>N273,
B12 =>N275, \~B2\=>N272,
B13 =>N275, \~B3\=>N271,
B14 => N275, \~B4\ => N270,
B15 =>N275, \~B5\ =>N269,
B2 => N286, \~B6\ => N268,
B3 =>N285, \~B7\ =>N267,
B4 =>N284, \~B8\ =>N266,
B5 =>N283, \~B9\ => N265
B6 =>N282,);
B7 =>N28l,
B8 =>N280, Gnd 1:Gnd
B9 =>N279, port map(
C0=>No, Gnd => LogGnd
C16 =>N10,);
OFin => 10V,
OFout => N306, Gnd 2:Gnd
S0 =>N187, port map(
S1=>N188, Gnd => N9

KMK LUTS 1:KMK LUT8

\CG_DMSFFPG_CLRregl3-1x_I\
CG_DMSFFPG_CLRregl3 1x

port map(port map(
A0 =>N79, CLK => N43,
Al =>N78, CLR => N44,
A2 =>N77, DO =>N70,
A3 =>N76, D1 =>N69,
A4 =>N75, D10 =>N60,
COS0 =>N92, D11 =>N59,
COS1 =>Nol1, D12 => NS58,
COS2 => N90, D2 => N68,
COS3 => N8§9, D3 =>N67,
COS4 => N88, D4 => N66,
COS5 =>Ng7, D5 =>N63,
COS6 => N6, D6 => N64,
COS7 => N85, D7 =>N63,
SINO => N8, D8 => N62,
SIN1 => N7, D9 =>N61,
SIN2 => N6, LD => Oper,
SIN3 => N5, Q0 =>N232,
SIN4 => N4, Q1 =>N231,
SINS => N3, Q10 =>N222,
SIN6 => N2, Q11 =>N221,
SIN7 => N1 Q12 => N220,
); Q2 =>N230,
Q3 =>N229,
\CG_5bitAdder-1x 1\ Q4 =>N228,
CG_5bitAdder 1x Q5 =>N227,
port map(Q6 =>N226,
A0 =>N120, Q7 =>N225,
Al =>N129, Q8 =>N224,
A2 =>N127, Q9 =>N223,
A3 =>N125, \~QO\ => N42,
A4 =>N123, \~Q10\=>N32,
B0 =>N109, ~Q11\=>N31,
B1=>NI111, \~Q12\ => N30,
B2 =>N113, ~QI1\=>N41,
B3 =>N115, \~Q2\ => N40,
B4 =>N117, \~Q3\=>N39,
S0 =>N139, \~Q4\ => N38,
S1=>N140, \~Q5\=>N37,
S2 =>N141, \~Q6\ => N36,
S3 =>N142, \~Q7\=>N35,
S4 =>N143, \~Q8\ => N34,
\~AO0\ =>N121, \~Q9\ => N33
\~A1\=>N128,);
\~A2\ =>N126,
\~A3\ =>N124, \CG_DMSFFPG CLRregl3-1x 2\
\~A4\=>N122, CG_DMSFFPG CLRregl3 1x
\~BO\=>N110, port map(
\~B1\ =>N112, CLK =>N152,
\~B2\=>N114, CLR => N44,
\~B3\=>N116, DO => N57,
\~B4\=>N118 D1 =>N56,
); D10 =>N47,
D11 =>N46,

98

D12 => N45, D6 =>N199,
D2 =>N55, D7 =>N198,
D3 => N34, D8 =>N197,
D4 => N353, D9 =>N196,
D5 =>N52, LD => Oper,
D6 => N51, Q0 =>1ISOV,
D7 => N50, Q1 =>180,
D8 => N49, Q10=>189,
D9 => N48, Q11 =>1S10,
LD => Oper, Q12 =>1S11,
Q0 => N288, Q13 =1S12,
Q1 =>N287, Q14 =>1S13,
Q10 =>N278, Q15=>1S14,
Q11 =>N277, Ql6 =>1S15,
Q12 =>N275, Q2=>1S1,
Q2 =>N286, Q3 =>182,
Q3 => N285, Q4 =183,
Q4 => N28&4, Q5 =184,
Q5 =>N283, Q6 => 185,
Q6 =>N282, Q7 =>18Se,
Q7 =>N28l, Q8 =187,
Q8 =>N280, Q9 =>18S8,
Q9 =>N279, \~QO0\=>N151,
\~QO0\ => N274, \~QI10\ =>\~IS9\,

\~Q10\ => N264,
\~QI11\ => N263,
\~QI12\ => N289,

\~Q11\=>\~IS10\,
\~QI2\ => \~IS11\,
\~QI3\ => \~IS12\,

\~QI\=>N273, \~Q14\ => \~IS13\,
\~Q2\ => N272, \~Q15\ => \~IS14\,
\~Q3\ => N271, \~Q16\ => \~IS15\,
\~Q4\ => N270, \~Q1\ =>\~IS0\,
\~Q5\ => N269, \~Q2\ =>\~IS1\,
\~Q6\ => N268, \~Q3\ =>\~IS2\,
\~Q7\ => N267, \~Q4\ => \~IS3\,
\~Q8\ => N266, \~Q5\ => \~IS4\,
\~Q9\ => N265 \~Q6\ => \~IS5\,

) \~Q7\ =>\~IS6\,
\~Q8\ =>\~IS7\,

\CG_DMSFFPGregl7-1x_I\ \~QO\ => \~IS8\

99

CG_DMSFFPGregl7 1x);
port map(

CLK =>N152, \CG_DMSFFPGregl7-1x_2\
CLR => N339, CG_DMSFFPGregl7 1x
D0 =>N306, port map(
D1 =>N187, CLK => N43,
D10 =>N195, CLR =>N339,
D11 =>N194, D0 =>N73,
D12 =>N193, D1 =>N203,
D13 =>N192, D10 =>N211,
D14 =>N191, D11 =>N210,
D15 =>N190, D12 =>N209,
D16 =>N189, D13 =>N208,
D2 =>N188, D14 =>N207,
D3 =>N202, D15 => N206,
D4 =>N201, D16 => N205,
D5 =>N200, D2 =>N204,

D3 =>N218, Q2 =>N77,

D4 =>N217, Q3 =>N76,
D5 =>N216, Q4 =>N75,
D6 =>N215, \~QO\ =>N149,
D7 =>N214, ~Q1\=>N148,
D8 =>N213, \~Q2\=>N147,
D9 =>N212, \~Q3\ =>N146,
LD => Oper, \~Q4\ => N145
Q0 =>QSOV,)i
QI =>QS0,
Q10=>QS9, \CG_DMSFFPGreg5-1x_2\
Q11 =>QsSI10, CG_DMSFFPGreg5 1x
Q12 =>QS11, port map(
Q13 =>QS12, CLK =>N152,
Q14 =>QS13, DO => DRFMO,
Q15 =>QS14, D1 =>DRFMI,
Q16 =>QS15, D2 => DRFM2,
Q2 =>QSl, D3 => DRFM3,
Q3 =>QS2, D4 => DRFM4,
Q4 =>QS3, LD => Oper,
Q5 =>QS4, Q0 =>N120,
Q6 =>QSS5, Q1 =>N129,
Q7 =>QS6, Q2 =>N127,
Q8 =>QS7, Q3 =>N125,
Q9 =>QSS, Q4 =>N123,
\~QO0\ =>N150, \~QO0\=>N121,
\~Q10\ => \~QS9\, ~Q1\=>N128,
\~Q11\=>\~QS10\, \~Q2\ =>N126,
\~Q12\ =>\~QS11\, \~Q3\=>N124,
\~Q13\ =>\~QS12\, \~Q4\ =>N122
\~Q14\ =>\~QS13\,);
\~Q15\ =>\~QS14\,
\~Q16\ =>\~QS15\, \CG_DMSFFPGreg5-1x_3\
\~Q1\ =>\~QS0\, CG_DMSFFPGreg5 1x
\~Q2\ =>\~QSI1\, port map(
\~Q3\ =>\~QS2\, CLK =>N152,
\~Q4\ =>\~QS3\, DO =>N134,
\~Q5\ =>\~QS4\, D1 =>N135,
\~Q6\ =>\~QS5\, D2 =>N136,
\~Q7\ =>\~QS6\, D3 =>N137,
\~Q8\ =>\~QS7\, D4 =>N138,
\~Q9\ =>\~QS8\ LD => UNP,
); Q0 =>N109,
Q1 =>N111,
\CG_DMSFFPGreg5-1x_1\ : Q2 =>N113,
CG_DMSFFPGreg5 1x Q3 =>N115,
port map(Q4 =>NI117,
CLK =>N43, \~QO0\=>N110,
DO =>N139, ~QI\=>N112,
D1 =>N140, \~Q2\=>N114,
D2 =>N141, \~Q3\=>N116,
D3 =>N142, \~Q4\=>N118
D4 =>N143,);
LD => Oper,
Q0 =>N79, \CG_DMSFFPGreg5-1x_4\
Q1 =>N78, CG_DMSFFPGreg5 1x

100

port map(

);

\CG_DMSFFPGreg5-1x_5\

CLK => N43,
DO => Inc0,
D1 =>Incl,
D2 =>Inc2,
D3 => Inc3,
D4 => Inc4,
LD => PRB,
Q0 =>N134,
Q1 =>NI135,
Q2 =>N136,
Q3 =>N137,
Q4 =>N138,

\~QO0\ => N144,
\~Q1\ =>N133,
\~Q2\ =>N132,
\~Q3\ =>N131,

\~Q4\ =>N130

CG_DMSFFPGreg5 1x
port map(

);

\CG_DMSFFPGreg5-1x_6\

CLK => N43,
D0 => GainO0,
D1 => Gainl,
D2 => Gain2,
D3 => Gain3,
D4 => URB,

LD =>PRB,

Q0 =>N347,
Q1 =>N348,
Q2 =>N349,
Q3 =>N350,
Q4 =>N351,

\~QO0\ =>NT119,

\~QI\ => N74,
\~Q2\ => N72,
\~Q3\ => N71,
\~Q4\ => N29

CG_DMSFFPGreg5 1x
port map(

CLK =>N152,
DO => N347,
D1 => N348,
D2 => N349,
D3 => N350,
D4 => N351,
LD => UNP,
Q0 => N84,
Q1 =>N82,
Q2 =>N8l,
Q3 => N345,

101

Q4 =>N352,

\~QO\ => N83,

\~Q1\ => N344,

\~Q2\ => N80,

\~Q3\ => N346,

\~Q4\ => N28
)

\CG_DMSFFPGreg8-1x_1\
CG_DMSFFPGreg8 1x
port map(

CLK => N43,

DO => N8,

D1 =>N7,

D2 => N6,

D3 => N5,

D4 => N4,

D5 =>N3,

D6 => N2,

D7 =>Nl,

LD => Oper,

Q0 =>N100,

Q1 =>N099,

Q2 =>N098g,

Q3 =>N097,

Q4 =>N9e,

Q5 =>N095,

Q6 =>N94,

Q7 =>N093,

\~QO\ => N27,

\~Q1\ => N26,

\~Q2\ =>N25,

\~Q3\ =>N24,

\~Q4\ => N23,

\~Q5\=>N22,

\~Q6\ =>N21,

\~Q7\=>N20

)i

\CG_DMSFFPGreg8-1x_2\
CG_DMSFFPGreg8 1x
port map(

CLK =>N152,
DO =>N92,
D1 =>No91,
D2 =>N90,
D3 =>Ng9,
D4 =>N8g8,
D5 =>N8§7,
D6 => N86,
D7 => N85,
LD => Oper,
Q0 =>N108,
Q1 =>N107,
Q2 =>N106,
Q3 =>N105,

Q4 =>N104, \~Gain2\ => N80,

Q5=>N103, \~Gain3\ => N346
Q6 =>N102,);
Q7 =>N101,
\~QO0\ =>N19, \CG_Gain_Shifter-1x_2\
\~Q1\=>N18, CG_Gain_Shifter 1x
\~Q2\ =>N17, port map(
\~Q3\=>N16, Gain0 => N84,
\~Q4\ =>N15, Gainl =>NB82,
\~Q5\=>N14, Gain2 => N81,
\~Q6\ =>N13, Gain3 => N345,
\~Q7\=>N12 10 => N108,
); 11 =>N107,
12 =>N106,
\CG_Gain_Shifter-1x_1\ : I3 =>N105,
CG_Gain_Shifter 1x 14 =>N104,
port map(I5 =>N103,
Gain0 => N84, 16 =>N102,
Gainl => N82, 17 =>N101,
Gain2 => N8, 010 =>N52,
Gain3 => N345, O11=>NS51,
10 =>N100, 012 =>N50,
11 =>N99, 013 =>N49,
12 =>N98, 014 =>N48,
13 =>N097, 015 =>N47,
14 =>N96, 016 => N46,
I5 => N95, 017 =>N45,
16 => N9%4, 05 =>N357,
17 =>N93, 06 => N56,
010 => N65, 07 => NS5,
011 => N64, 08 => N54,
012 =>N63, 09 => N53,
013 =>N62, \~Gain0\ => N83,
014 =>N61, \~Gainl\ => N344,
015 =>N60, \~Gain2\ => N&0,
016 =>N59, \~Gain3\ => N346
017 => N58,);
05 =>N70,
06 => N69,
O7 => N68, end structural;
08 => N67,
09 => N66,

\~Gain0\ => N&3,
\~Gainl\ => N344,

102

B. TEST BENCH FOR THE SINGLE RANGE BIN

-- Title: Test Bench for
cg_rangebinmodulator

-- Design : Rangebinl with tb

-- Author : Hakan Bergon

-- Company : NPS

--File:
$DSN\src\TestBench\cg rangebinmodulator TB
.vhd

-- Generated :7/11/2002, 9:07 AM

--From:
$DSN\src\cg_rangebinmodulator.vhd

-- By: Active-HDL Built-in Test Bench
Generator ver. 1.2s

-- Description : Automatically
generated Test Bench for
cg_rangebinmodulator _tb

library ieee;
use ieee.std_logic 1164.all;

-- Add your library and
packages declaration here ...

entity cg_rangebinmodulator tb is
end cg_rangebinmodulator tb;

architecture TB_ARCHITECTURE of
cg_rangebinmodulator tb is
-- Component declaration of

the tested unit
component
cg_rangebinmodulator
port(

CLK :in std_logic;
DRFMO : in std_logic;
DRFMI : in std_logic;
DRFM?2 : in std_logic;
DRFM3 : in std_logic;
DRFM4 : in std_logic;
Gain0 : in std_logic;
Gainl : in std_logic;
Gain2 : in std_logic;
Gain3 : in std_logic;

103

10 : in std_logic;

I1 : in std_logic;

12 :in std_logic;

I3 :in std_logic;

14 : in std_logic;

I5 :in std_logic;

16 : in std_logic;

17 :in std_logic;

I8 : in std_logic;

19 : in std_logic;
110 : in std_logic;
I11 : in std_logic;
I12 : in std_logic;
113 : in std_logic;
114 : in std_logic;
I15 : in std_logic;
IncO : in std_logic;
Incl : in std_logic;
Inc2 : in std_logic;
Inc3 : in std_logic;
Inc4 : in std_logic;
IOV :in std_logic;
IS0 : out std_logic;
IS1 : out std_logic;
IS2 : out std_logic;
IS3 : out std_logic;
IS4 : out std_logic;
IS5 : out std_logic;
IS6 : out std_logic;
IS7 : out std_logic;
IS8 : out std_logic;
IS9 : out std_logic;
IS10 : out std_logic;
IS11 : out std_logic;
IS12 : out std_logic;
IS13 : out std_logic;
IS14 : out std_logic;
IS15 : out std_logic;
ISOV : out std_logic;
ODVin : in std_logic;
ODVout : out std_logic;
Oper : in std_logic;
PRB : in std_logic;
PSV :in std _logic;
QO : in std_logic;
QI :in std_logic;
Q2 :in std_logic;
Q3 :instd_logic;
Q4 :in std_logic;
Q5 :in std_logic;
Q6 : in std_logic;
Q7 :in std_logic;
Q8 :in std_logic;
Q9 :in std_logic;

Q10 : in std_logic; \~IS14\ : out std_logic;

QI11 :in std_logic; \~IS15\ : out std_logic;
Q12 :in std logic; \~QO\ : in std_logic;

Q13 :instd logic; \~Q1\ : in std_logic;

Q14 : in std logic; \~Q2\ : in std_logic;

Q15 :in std_logic; \~Q3\: in std_logic;

QOV :in std_logic; \~Q4\ : in std_logic;

QSO0 : out std_logic; \~Q5\ : in std_logic;

QSI1 : out std_logic; \~Q6\ : in std_logic;

QS2 : out std_logic; \~Q7\: in std_logic;

QS3 : out std_logic; \~Q8\ : in std_logic;

QS4 : out std_logic; \~Q9\ : in std_logic;

QS5 : out std_logic; \~Q10\ : in std_logic;
QS6 : out std_logic; \~QI11\: in std_logic;

QS7 : out std logic; \~QI12\ : in std_logic;
QS8 : out std_logic; \~QI13\:in std_logic;

QSO : out std_logic; \~Q14\ : in std_logic;
QS10 : out std_logic; \~Q15\ : in std_logic;
QS11 : out std_logic; \~QSO0\ : out std_logic;
QS12 : out std_logic; \~QSI1\ : out std_logic;
QS13 : out std_logic; \~QS2\ : out std_logic;
QS14 : out std_logic; \~QS3\ : out std_logic;
QSI15 : out std_logic; \~QS4\ : out std_logic
QSOV : out std_logic; \~QS5\ : out std_logic;
UNP : in std_logic; \~QS6\ : out std_logic;
URB : in std_logic; \~QS7\ : out std_logic;
\~I0\ : in std_logic; \~QS8\ : out std_logic;
\~I1\ : in std_logic; \~QS9\ : out std_logic;
\~I2\ : in std_logic; \~QS10\ : out std_logic;
\~I3\: in std_logic; \~QS11\ : out std_logic;
\~14\ : in std_logic; \~QS12\ : out std_logic;
\~I5\: in std_logic; \~QS13\: out std_logic;
\~16\ : in std_logic; \~QS14\ : out std_logic;
\~I7\ : in std_logic; \~QS15\ : out std_logic);
\~I8\ : in std_logic; end component;

\~I9\ : in std_logic;

\~I10\ : in std_logic; -- Stimulus signals - signals mapped to
\~I11\: in std_logic; the input and inout ports of tested entity
\~I12\: in std_logic; signal CLK : std_logic;
\~113\: in std_logic; signal DRFMO : std_logic;
\~114\ : in std_logic; signal DRFM1 : std_logic;
\~I15\: in std_logic; signal DRFM2 : std_logic;
\~ISO\ : out std_logic; signal DRFM3 : std_logic;
\~ISI\ : out std_logic; signal DRFM4 : std_logic;
\~IS2\ : out std_logic; signal Gain0 : std_logic;
\~IS3\ : out std_logic; signal Gainl : std_logic;
\~IS4\ : out std_logic; signal Gain2 : std_logic;
\~IS5\ : out std_logic; signal Gain3 : std_logic;
\~IS6\ : out std_logic; signal 10 : std_logic;
\~IS7\ : out std_logic; signal I1 : std_logic;
\~IS8\ : out std_logic; signal 12 : std_logic;
\~IS9\ : out std_logic; signal 13 : std_logic;
\~IS10\ : out std_logic; signal 14 : std_logic;
\~IS11\: out std_logic; signal I5 : std_logic;
\~IS12\ : out std_logic; signal 16 : std_logic;
\~IS13\: out std_logic; signal 17 : std_logic;

104

signal I8 : std_logic; signal \~Q3\ : std_logic;

signal 19 : std_logic; signal \~Q4\ : std_logic;
signal 110 : std_logic; signal \~Q5\ : std_logic;
signal I11 : std_logic; signal \~Q6\ : std_logic;
signal I12 : std_logic; signal \~Q7\ : std_logic;
signal 113 : std_logic; signal \~Q8\ : std_logic;
signal 114 : std_logic; signal \~Q9\ : std_logic;
signal 115 : std_logic; signal \~Q10\ : std_logic;
signal Inc0 : std_logic; signal \~Q11\ : std_logic;
signal Inc1 : std_logic; signal \~Q12\ : std_logic;
signal Inc2 : std_logic; signal \~Q13\ : std_logic;
signal Inc3 : std_logic; signal \~Q14\ : std_logic;
signal Inc4 : std_logic; signal \~Q15\ : std_logic;
signal IOV : std_logic; -- Observed signals - signals
signal ODVin : std_logic; mapped to the output ports of tested entity
signal Oper : std_logic; signal ISO : std_logic;
signal PRB : std_logic; signal IS1 : std_logic;
signal PSV : std_logic; signal IS2 : std _logic;
signal QO : std_logic; signal IS3 : std_logic;
signal Q1 : std _logic; signal IS4 : std_logic;
signal Q2 : std_logic; signal IS5 : std_logic;
signal Q3 : std logic; signal IS6 : std_logic;
signal Q4 : std_logic; signal IS7 : std_logic;
signal Q5 : std_logic; signal IS8 : std_logic;
signal Q6 : std_logic; signal IS9 : std_logic;
signal Q7 : std_logic; signal IS10 : std_logic;
signal Q8 : std_logic; signal IS11 : std_logic;
signal Q9 : std_logic; signal IS12 : std_logic;
signal Q10 : std_logic; signal IS13 : std_logic;
signal Q11 : std_logic; signal IS14 : std_logic;
signal Q12 : std_logic; signal IS15 : std_logic;
signal Q13 : std_logic; signal ISOV : std_logic;
signal Q14 : std_logic; signal ODVout : std_logic;
signal Q15 : std logic; signal QSO0 : std_logic;
signal QOV : std_logic; signal QS1 : std_logic;
signal UNP : std_logic; signal QS2 : std_logic;
signal URB : std_logic; signal QS3 : std_logic;
signal \~I0\ : std_logic; signal QS4 : std_logic;
signal \~I1\ : std_logic; signal QS5 : std_logic;
signal \~I2\ : std_logic; signal QS6 : std_logic;
signal \~I3\ : std_logic; signal QS7 : std_logic;
signal \~I4\ : std_logic; signal QS8 : std _logic;
signal \~I5\ : std_logic; signal QS9 : std_logic;
signal \~I6\ : std_logic; signal QS10 : std_logic;
signal \~I7\ : std_logic; signal QS11 : std_logic;
signal \~I8\ : std_logic; signal QS12 : std_logic;
signal \~I9\ : std_logic; signal QS13 : std_logic;
signal \~I10\ : std_logic; signal QS14 : std_logic;
signal \~I11\ : std_logic; signal QS15 : std_logic;
signal \~I12\ : std_logic; signal QSOV : std_logic;
signal \~I13\: std_logic; signal \~ISO\ : std_logic;
signal \~114\ : std_logic; signal \~IS1\ : std_logic;
signal \~I15\ : std_logic; signal \~IS2\ : std_logic;
signal \~QO\ : std_logic; signal \~IS3\ : std_logic;
signal \~Q1\ : std_logic; signal \~IS4\ : std_logic;
signal \~Q2\ : std_logic; signal \~IS5\ : std_logic;

105

signal \~IS6\ : std_logic; 112 =>112,

signal \~IS7\ : std_logic; 113 =>113,
signal \~IS8\ : std logic; 114 => 114,
signal \~ISO\ : std logic; 115 =>115,
signal \~IS10\ : std_logic; IncO => IncO,
signal \~IS11\ : std_logic; Incl => Incl,
signal \~IS12\ : std_logic; Inc2 => Inc2,
signal \~IS13\ : std_logic; Inc3 => Inc3,
signal \~IS14\ : std_logic; Inc4 => Inc4,
signal \~IS15\ : std_logic; IOV =>10V,
signal \~QSO0\ : std_logic; IS0 =>1S0,
signal \~QS1\ : std_logic; IS1=>1S1,
signal \~QS2\ : std_logic; IS2 =>182,
signal \~QS3\ : std logic; IS3 => 183,
signal \~QS4\ : std logic; IS4 => 1S4,
signal \~QS5\ : std_logic; IS5 =>18S5,
signal \~QS6\ : std_logic; IS6 = ISe,
signal \~QS7\ : std_logic; IS7=>187,
signal \~QS8\ : std_logic; IS8 => IS8,
signal \~QS9\ : std_logic; 1S9 => 189,
signal \~QS10\ : std_logic; IS10=>1S10,
signal \~QS11\: std_logic; IS11 =>1S11,
signal \~QS12\ : std _logic; IS12 =>1S12,
signal \~QS13\ : std_logic; IS13 =>IS13,
signal \~QS14\ : std_logic; IS14 =>1S14,
signal \~QS15\ : std_logic; IS15 =>1IS15,
ISOV => IS0V,
-- Add your code here ... ODVin => ODVin,
ODVout => ODVout,
begin Oper => Oper,
PRB => PRB,
- Unit Under Test port map PSV =>PSV,
UUT : cg_rangebinmodulator Q0 =>Qo,
port map (Q1=>Ql,
CLK => CLK, Q2=>Q2,
DRFMO0 => DRFMO, Q3 =>Q3,
DRFM1 => DRFM1, Q4 =>0Q4,
DRFM2 => DRFM2, Q5=>Q5,
DRFM3 => DRFM3, Q6 =>Q6,
DRFM4 => DRFM4, Q7=>0Q7,
Gain0 => Gain0, Q8 =>Q8,
Gainl => Gainl, Q9 =>Q9,
Gain2 => Gain2, Q10=>Q10,
Gain3 => Gain3, Ql1=>Qll1,
10 => 10, QI2=>Q12,
=11, Q13 =>QIl3,
2=>12, Q14 =>Ql4,
13 =13, Q15 =>Ql5,
14 =>4, QOV =>QOV,
I5=>15, QS0 =>QS0,
16 => 16, QS1=>QS]1,
17=>17, QS2 =>Q8S2,
I8 =>18, QS3 =>QS3,
19 =>19, QS4 =>QS4,
110 =>110, QS5 =>QS5,
111 =>111, QS6 => QSe,

106

QS7=>QS7, \~Q12\ =>\~Q12\,

QS8 =>QS8, \~Q13\=>\~Q13\,
QS9=>QS9, \~Q14\=>\~Q14\,
QS10=>QsI10, \~Q15\=>\~Ql5\,
QS11=>QSI11, \~QS0\ =>\~QS0\,
QS12 =>QS12, \~QS1\ =>\~QS1\,
QS13 =>(QS13, \~QS2\ =>\~QS2\,
QS14 =>QS14, \~QS3\ =>\~QS3\,
QS15=>QSI15, \~QS4\ =>\~QS4\,
QSOV =>QSO0V, \~QS5\ =>\~QS5\,
UNP => UNP, \~QS6\ =>\~QS6\,
URB => URB, \~QS7\ =>\~QS7\,
\~10\ =>\~10\, \~QS8\ =>\~QS8\,
1\ => \~11\, \~QS9\ =>\~QS9\,
12\ => \~12\, \~QS10\=>\~QS10\,
\~I3\ => \~13\, \~QSI11\=>\~QS11\,
\~I4\ => \~14\, \~QS12\=>\~QS12\,
\~I5\ => \~15\, \~QS13\=>\~QS13\,
\~16\ => \~16\, \~QS14\ =>\~QS14\,
7\ =>\~17)\, \~QS15\=>\~QS15\
\~I8\ =>\~18\,);

I\ =>\~19\,

\~T10\ =>\~110\, --Below VHDL code is an inserted
LTI\ =>\~I11)\, Acompile\Waveform Editor 4.vhs

12\ =>\~112\, --User can modify it

\~113\ =>\~113\,

\~T14\ =>\~114\, STIMULUS: process

\~T15\ =>\~I15)\, begin -- of stimulus process

\~ISO\ => \~IS0\, --wait for <time to next event>; --
\~IST\ => \~IS1)\, <current time>

\~IS2\ => \~IS2\, DRFMO0 <="0";

\~IS3\ => \~IS3\, DRFM1 <='0";

\~IS4\ =>\~IS4\, DRFM2 <="0";

\~IS5\ =>\~IS5\, DRFM3 <="1";

\~IS6\ =>\~IS6\, DRFM4 <='0";

\~IS7\ =>\~IS7\, IncO <="1";

\~IS8\ => \~IS8\, Incl <="0"

\~ISO\ => \~IS9\, Inc2 <="0"

\~IS10\ => \~IS10\, Inc3 <="'0"
WISTIN=>\~IS11\, Inc4 <="0";

\~IS12\ => \~IS12\, Gain0 <="1";

\~IS13\ =>\~IS13\, Gainl <="0";

\~IS14\ =>\~IS14\, Gain2 <="'0";

\~IS15\ =>\~IS15\, Gain3 <="0";

\~QO\ =>\~QO0\, QI <="1";
~Q1\=>\~Q1\, \~Q10\ <="1";

\~Q2\ =>\~Q2\, \~QI\ <="1";

\~Q3\ =>\~Q3\, \~Q5\ <="1";

\~Q4\ =>\~Q4\, 6\ <="1";

\~Q5\ =>\~Q5\, WIS\ <="1";

\~Q6\ =>\~Q6\, WA <="1"

\~Q7\ =>\~Q7\, I3\ <="1";

\~Q8\ =>\~Q8\, W2\ <="1";

\~Q9\ =>\~Q9\, QOV <='0"
\~Q10\=>\~Q10\, Q15<="0,

Q1IN =>\~QI1\, W15\ <="1";

107

Q10 <="0,
Q9 <=0
Q8 <=0’
\~Q2\ <="1",
113 <="0";
112 <="0",
111 <=0
~Q13\<="1";
IOV <="0"
Ql4<="0"
QI3 <="0,
Q12 <="0"
Qll1<="0"
ODVin <="0';
~QIN<="1"
\~QO\ <="1"
16 <='0";
I5<='0"

14 <='0"

115 <="0"
114 <="0",
Q2 <=0
CLK <="'0"
110 <="0"
19<='0"

I8 <="0";
17<="0"
\~I\ <="1";
I8\ <="1";
W7N<="1";
\~Q8\ <="1";
~Q7\<="1";
\~Q6\ <="1";
=14\ <="1";
13\ <="1";
=112\ <="1";
WITIN<="1";
10\ <="1";
N <="1"
=10\ <="1";
URB <="1";
UNP <='0";
Q1 <='04
Q0 <='0%
PSV <='0";
PRB <="1";
Oper <="1";
Q7 <=0
Q6 <="01
Q5 <="04
Q4 <='04
Q3 <=0
13<="0"

12 <="0"

I1 <=0
10<="0";

108

\~Q4\ <="1",
~Q3\ <="1",
~Q15\<="1";
\~Q14\<="1";
\~Q12\<="1";
wait for 1 ns; --0 fs
CLK <="'1";
wait for 1 ns; --1 ns
CLK <="'0";
UNP <="'1";
PSV <="1";
PRB <="0";
wait for 1 ns; --2 ns
CLK <="'1";
URB <=0,
wait for 1 ns; --3 ns
CLK <="'0";
UNP <='0";
PSV <='0";
wait for 1 ns; --4 ns
CLK <=1},
wait for 1 ns; --5 ns
CLK <="0"
wait for 1 ns; --6 ns
CLK <="'1";
wait for 1 ns; --7 ns
CLK <='0";
wait for 1 ns; --8 ns
CLK <="'1"
wait for 1 ns; --9 ns
CLK <="0";
wait for 1 ns; --10 ns
CLK <="'1%;
wait for 1 ns; --11 ns
CLK <='0";
wait for 1 ns; --12 ns
CLK <="'1";
wait for 1 ns; --13 ns
CLK <='0";
wait for 1 ns; --14 ns
CLK <=1},
wait for 1 ns; --15 ns
CLK <="0",
wait for 1 ns; --16 ns
CLK <="'1%;
wait for 1 ns; --17 ns
CLK <='0";
wait for 1 ns; --18 ns
CLK <="'1"
wait for 1 ns; --19 ns
CLK <="'0";
wait for 1 ns; --20 ns
CLK <=1},
wait for 1 ns; --21 ns
CLK <="0"
wait for 1 ns; --22 ns

CLK <="'1%;
wait for 1 ns; --23 ns
CLK <='0";

wait for 76 ns; --24 ns
-- end of stimulus events
wait;
end process; -- end of stimulus process

-- Add your stimulus here ...

end TB_ ARCHITECTURE;

109

configuration
TESTBENCH_FOR cg rangebinmodulator of
cg_rangebinmodulator_tb is
for TB. ARCHITECTURE
for UuT
cg_rangebinmodulator
use entity
work.cg_rangebinmodulator(structural);
end for;
end for;
end
TESTBENCH_FOR cg rangebinmodulator;

C. EXECUTING MACRO FOR THE ONE RANGE-BIN TEST BENCH

SetActiveLib wave -noreg [S11
-workcomp wave -noreg [S12
-include wave -noreg I1S13
“$DSN\src\cg_rangebinmodulator.vhd” wave -noreg [S14
comp wave -noreg [S15
-include wave -noreg [ISOV
“$DSN\src\TestBench\cg_rangebinmodulator T wave -noreg ODVin
B.vhd” wave -noreg ODVout
asim wave -noreg Oper
TESTBENCH_FOR cg rangebinmodulator wave -noreg PRB
wave wave -noreg PSV
wave -noreg CLK wave -noreg Q0
wave -noreg DRFMO0 wave -noreg Q1
wave -noreg DRFM1 wave -noreg Q2
wave -noreg DRFM?2 wave -noreg Q3
wave -noreg DRFM3 wave -noreg Q4
wave -noreg DRFM4 wave -noreg Q5

wave -noreg GainQ
wave -noreg Gainl
wave -noreg Gain2
wave -noreg Gain3
wave -noreg 10
wave -noreg 11
wave -noreg 12
wave -noreg 13
wave -noreg [4
wave -noreg [5
wave -noreg 16
wave -noreg 17
wave -noreg I8
wave -noreg 19
wave -noreg 110
wave -noreg [11
wave -noreg 112
wave -noreg [13
wave -noreg 114
wave -noreg [15
wave -noreg IncO
wave -noreg Incl
wave -noreg Inc2
wave -noreg Inc3
wave -noreg Inc4
wave -noreg IOV
wave -noreg S0
wave -noreg [S1
wave -noreg [S2
wave -noreg [S3
wave -noreg [S4
wave -noreg IS5
wave -noreg [S6
wave -noreg [S7
wave -noreg IS8
wave -noreg [S9
wave -noreg [S10

wave -noreg Q6
wave -noreg Q7
wave -noreg Q8
wave -noreg Q9
wave -noreg Q10
wave -noreg Q11
wave -noreg Q12
wave -noreg Q13
wave -noreg Q14
wave -noreg Q15
wave -noreg QOV
wave -noreg QS0
wave -noreg QS1
wave -noreg QS2
wave -noreg QS3
wave -noreg QS4
wave -noreg QS5
wave -noreg QS6
wave -noreg QS7
wave -noreg QS8
wave -noreg QS9
wave -noreg QS10
wave -noreg QS11
wave -noreg QS12
wave -noreg QS13
wave -noreg QS14
wave -noreg QS15
wave -noreg QSOV
wave -noreg UNP
wave -noreg URB
wave -noreg {\~I10\}
wave -noreg {\~[1\}
wave -noreg {\~[2\}
wave -noreg {\~I3\}
wave -noreg {\~14\}
wave -noreg {\~I[5\}
wave -noreg {\~I6\}

wave -noreg {\~17\}

wave -noreg {\~I8\}

wave -noreg {\~I9\}

wave -noreg {\~I110\}
wave -noreg {\~[11\}
wave -noreg {\~112\}
wave -noreg {\~113\}
wave -noreg {\~114\}
wave -noreg {\~115\}
wave -noreg {\~ISO\}
wave -noreg {\~IS1\}
wave -noreg {\~IS2\}
wave -noreg {\~IS3\}
wave -noreg {\~IS4\}
wave -noreg {\~IS5\}
wave -noreg {\~IS6\}
wave -noreg {\~IS7\}

wave -noreg {\~Q9\}

wave -noreg {\~Q10\}
wave -noreg {\~Q11\}
wave -noreg {\~Q12\}
wave -noreg {\~Q13\}
wave -noreg {\~Q14\}
wave -noreg {\~QI15\}
wave -noreg {\~QSO0\}
wave -noreg {\~QSI\}
wave -noreg {\~QS2\}
wave -noreg {\~QS3\}
wave -noreg {\~QS4\}
wave -noreg {\~QS5\}
wave -noreg {\~QS6\}
wave -noreg {\~QS7\}
wave -noreg {\~QS8\}
wave -noreg {\~QSO\}

wave -noreg {\~IS8\}
wave -noreg {\~IS9O\}
wave -noreg {\~IS10\}
wave -noreg {\~IS11\}

wave -noreg {\~QS10\}

wave -noreg {\~QS11\}

wave -noreg {\~QS12\}

wave -noreg {\~QS13\}

wave -noreg {\~IS12\} wave -noreg {\~QS14\}

wave -noreg {\~IS13\} wave -noreg {\~QS15\}

wave -noreg {\~IS14\} run 100.00 ns

wave -noreg {\~IS15\} # The following lines can be used for
wave -noreg {\~QO\} timing simulation

wave -noreg {\~QI\} #acom backannotated vhdl file name>
wave -noreg {\~Q2\} #comp-include

wave -noreg {\~Q3\} “$DSN\src\TestBench\cg_rangebinmodulator T

wave -noreg {\~Q4\} B tim cfg.vhd”

wave -noreg {\~Q5\}
wave -noreg {\~Q6\}
wave -noreg {\~Q7\}
wave -noreg {\~Q8\}

111

#asim

TIMING_FOR cg rangebinmodulator

THIS PAGE INTENTIONALLY LEFT BLANK

112

APPENDIX E. VHDL CODE FOR THE 8 RANGE-BIN MODULATOR

A. TOP LEVEL VHDL CODE

LIBRARY IEEE;

USE IEEE.std logic 1164.all;

-- *¥xx%% DTM_8RBPs model *****

-- external ports

ENTITY DTM_8RBPs IS PORT (
CLK : IN std_logic;
DRFMO : IN std_logic;
DRFMI : IN std_logic;
DRFM?2 : IN std_logic;
DRFM3 : IN std_logic;
DRFM4 : IN std_logic;
ENABLE : IN std_logic;
GainO : IN std_logic;
Gainl : IN std_logic;
Gain2 : IN std_logic;
Gain3 : IN std_logic;
Inc0 : IN std_logic;

InPadQ10 : IN std_logic;
InPadQ11 : IN std_logic;
InPadQ12 : IN std_logic;
InPadQ13 : IN std_logic;
InPadQ14 : IN std_logic;
InPadQ15 : IN std_logic;
InPadQOV : IN std_logic;
\InPad~IO\ : IN std logic;
\InPad~I1\ : IN std logic;
\InPad~I2\ : IN std logic;
\InPad~I3\ : IN std logic;
\InPad~I4\ : IN std_logic;
\InPad~I5\ : IN std_logic;
\InPad~I6\ : IN std_logic;
\InPad~I7\ : IN std_logic;
\InPad~I8\ : IN std_logic;
\InPad~I9\ : IN std_logic;

Incl : IN std_logic;
Inc2 : IN std_logic;
Inc3 : IN std_logic;
Inc4 : IN std_logic;

\InPad~I10\ :
\InPad~I11\ :
\InPad~112\ :
\InPad~I13\ :

IN std_logic;
IN std_logic;
IN std_logic;
IN std_logic;

InPadlIO : IN std_logic; \InPad~I14\ : IN std logic;
InPadI1 : IN std_logic; \InPad~I15\: IN std_logic;
InPadI2 : IN std_logic; \InPad~QO\ : IN std_logic;
InPadI3 : IN std_logic; \InPad~Q1\ : IN std_logic;
InPadl4 : IN std_logic; \InPad~Q2\ : IN std_logic;
InPadI5 : IN std_logic; \InPad~Q3\ : IN std_logic;
InPadl6 : IN std_logic; \InPad~Q4\ : IN std_logic;
InPadlI7 : IN std_logic; \InPad~Q5\ : IN std_logic;
InPadI8 : IN std_logic; \InPad~Q6\ : IN std_logic;
InPadlI9 : IN std_logic; \InPad~Q7\ : IN std_logic;
InPadI10 : IN std_logic; \InPad~Q8\ : IN std_logic;
InPadI11 : IN std_logic; \InPad~Q9\ : IN std_logic;
InPadI12 : IN std_logic; \InPad~Q10\ : IN std_logic;
InPadI13 : IN std_logic; \InPad~Q11\: IN std_logic;
InPadI14 : IN std_logic; \InPad~Q12\ : IN std_logic;
InPadI15 : IN std_logic; \InPad~Q13\ : IN std_logic;

InPadIOV : IN std logic;
InPadQo :
: IN std_logic;

InPadQ1

IN std_logic;

\InPad~Q14\ :
\InPad~Q15\ :

IN std_logic;
IN std_logic;

ODVin : IN std_logic;

InPadQ2 : IN std_logic; ODVout : OUT std_logic;
InPadQ3 : IN std_logic; Oper : IN std_logic;
InPadQ4 : IN std_logic; OutPadISO : OUT std_logic;
InPadQ5 : IN std_logic; OutPadIS1 : OUT std_logic;
InPadQ6 : IN std_logic; OutPadIS2 : OUT std_logic;
InPadQ7 : IN std_logic; OutPadIS3 : OUT std_logic;
InPadQ8 : IN std_logic; OutPadIS4 : OUT std_logic;
InPadQ9 : IN std_logic; OutPadIS5 : OUT std_logic;

113

OutPadIS6 : OUT std_logic;
OutPadIS7 : OUT std_logic;
OutPadIS8 : OUT std logic;
OutPadIS9 : OUT std logic;

OutPadIS10
OutPadIS11
OutPadIS12
OutPadIS13
OutPadIS14
OutPadIS15

: OUT std_logic;
: OUT std_logic;
: OUT std_logic;
: OUT std_logic;
: OUT std_logic;
: OUT std_logic;

OutPadISOV : OUT std_logic;
OutPadQSo0 : OUT std_logic;
OutPadQS1 : OUT std_logic;
OutPadQS2 : OUT std_logic;
OutPadQS3 : OUT std_logic;
OutPadQS4 : OUT std_logic;
OutPadQS5 : OUT std_logic;
OutPadQS6 : OUT std_logic;
OutPadQS7 : OUT std_logic;
OutPadQS8 : OUT std_logic;
OutPadQS9 : OUT std_logic;

OutPadQS10
OutPadQS!11
OutPadQS12
OutPadQS13
OutPadQS14
OutPadQS15

: OUT std_logic;
: OUT std_logic;
: OUT std_logic;
: OUT std_logic;
: OUT std_logic;
: OUT std_logic;

\OutPad~QS10\: OUT
\OutPad~QS11\: OUT std_logic;

OutPadQSOV: OUT std_logic;
\OutPad~ISO\ : OUT std_logic;
\OutPad~IS1\: OUT std_logic;
\OutPad~IS2\ : OUT std_logic;
\OutPad~IS3\ : OUT std_logic;
\OutPad~IS4\ : OUT std_logic;
\OutPad~IS5\ : OUT std_logic;
\OutPad~IS6\ : OUT std_logic;
\OutPad~IS7\: OUT std _logic;
\OutPad~IS8\ : OUT std_logic;
\OutPad~IS9\ : OUT std_logic;
\OutPad~IS10\:OUT std _logic;
\OutPad~IS11\:OUT std_logic;
\OutPad~IS12\:OUT std logic;
\OutPad~IS13\:OUT std _logic;
\OutPad~IS14\:OUT std_logic;
\OutPad~IS15\:OUT std_logic;
\OutPad~QSO0\:OUT std_logic;
\OutPad~QS1\:OUT std logic;
\OutPad~QS2\:OUT std logic;
\OutPad~QS3\:OUT std_logic;
\OutPad~QS4\:OUT std_logic;
\OutPad~QS5\:OUT std_logic;
\OutPad~QS6\:OUT std_logic;
\OutPad~QS7\:OUT std_logic;
\OutPad~QS8\:OUT std_logic;
\OutPad~QS9\:OUT std_logic;
std_logic;

114

\OutPad~QS12\: OUT std_logic;
\OutPad~QS13\: OUT std_logic;
\OutPad~QS14\ : OUT std_logic;
\OutPad~QS15\: OUT std_logic;
PSV : IN std_logic;

RBinSelect0 : IN std_logic;
RBinSelectl : IN std_logic;
RBinSelect2 : IN std_logic;

UNP : IN std_logic;

URB : IN std_logic

)i

END DTM_8RBPs;

-- internal structure

ARCHITECTURE structural

DTM_8RBPs IS

-- COMPONENTS

COMPONENT DTM_ SigFanout
PORT (
Sigln : IN std_logic;
SigOutl : OUT std_logic;
SigOut2 : OUT std_logic
)i
END COMPONENT;

COMPONENT

CG_RangeBinModulator

PORT (
CLK : IN std_logic;
DRFMO : IN std_logic;
DRFMI1 : IN std_logic;
DRFM2 : IN std_logic;
DRFM3 : IN std_logic;
DRFM4 : IN std_logic;
GainO : IN std_logic;
Gainl : IN std_logic;
Gain2 : IN std_logic;
Gain3 : IN std_logic;
10 : IN std_logic;
I1 : IN std_logic;
12 : IN std_logic;
I3 : IN std_logic;
14 : IN std_logic;
I5 : IN std_logic;
16 : IN std_logic;
I7 : IN std_logic;
I8 : IN std_logic;
19 : IN std_logic;
110 : IN std_logic;
I11 : IN std_logic;
112 : IN std_logic;
113 : IN std_logic;
114 : IN std_logic;
I15 : IN std_logic;

OF

IncO : IN std_logic; QS11: OUT std_logic;

Incl : IN std_logic; QS12: OUT std_logic;
Inc2 : IN std_logic; QS13 : OUT std_logic;
Inc3 : IN std_logic; QS14 : OUT std_logic;
Inc4 : IN std_logic; QS15: OUT std_logic;
IOV : IN std_logic; QSOV : OUT std_logic;
IS0 : OUT std_logic; UNP : IN std_logic;
IS1: OUT std_logic; URB : IN std_logic;

IS2 : OUT std_logic; \~10\ : IN std_logic;

IS3 : OUT std_logic; \~I1\: IN std_logic;

IS4 : OUT std_logic; \~I2\: IN std_logic;

IS5 : OUT std_logic; \~I3\: IN std_logic;

IS6 : OUT std_logic; \~14\: IN std_logic;

IS7 : OUT std _logic; \~I5\: IN std_logic;

IS8 : OUT std logic; \~16\ : IN std_logic;

IS9 : OUT std logic; \~I7\ : IN std_logic;
IS10: OUT std_logic; \~I8\ : IN std_logic;
IS11 : OUT std_logic; \~I9\ : IN std_logic;
IS12 : OUT std_logic; \~I10\ : IN std_logic;
IS13 : OUT std_logic; \~I11\: IN std_logic;
IS14 : OUT std_logic; \~I112\: IN std_logic;
IS15: OUT std_logic; \~I13\: IN std_logic;
ISOV : OUT std_logic; \~114\ : IN std_logic;
ODVin : IN std logic; \~I15\: IN std_logic;
ODVout : OUT std_logic; \~ISO\ : OUT std_logic;
Oper : IN std_logic; \~ISI\ : OUT std_logic;
PRB : IN std_logic; \~IS2\ : OUT std_logic;
PSV : IN std_logic; \~IS3\: OUT std_logic;
QO : IN std_logic; \~IS4\ : OUT std_logic;
Q1 : IN std_logic; \~IS5\: OUT std_logic;
Q2 : IN std_logic; \~IS6\ : OUT std_logic;
Q3 : IN std_logic; \~IS7\: OUT std_logic;
Q4 : IN std_logic; \~IS8\ : OUT std_logic;
Q5 : IN std_logic; \~IS9\ : OUT std_logic;
Q6 : IN std_logic; \~IS10\ : OUT std_logic;
Q7 :IN std_logic; \~IS11\ : OUT std _logic;
Q8 : IN std_logic; \~IS12\: OUT std_logic;
Q9 : IN std_logic; \~IS13\: OUT std_logic;
Q10 : IN std_logic; \~IS14\ : OUT std_logic;
Q11 :IN std_logic; \~IS15\: OUT std_logic;
Q12 : IN std_logic; \~QO\ : IN std_logic;
Q13 :IN std_logic; \~QI\ : IN std_logic;
Q14 : IN std_logic; \~Q2\: IN std_logic;
Q15 : IN std_logic; \~Q3\: IN std_logic;
QOV : IN std_logic; \~Q4\ : IN std_logic;
QS0 : OUT std _logic; \~Q5\: IN std_logic;
QS1: OUT std_logic; \~Q6\ : IN std_logic;
QS2: OUT std _logic; \~Q7\: IN std_logic;
QS3 : OUT std_logic; \~Q8\ : IN std_logic;
QS4 : OUT std_logic; \~Q9\ : IN std_logic;
QS5 : OUT std_logic; \~Q10\: IN std_logic;
QS6 : OUT std_logic; \~QI1\: IN std_logic;
QS7:0UT std_logic; \~QI12\: IN std_logic;
QS8 : OUT std_logic; \~QI13\: IN std_logic;
QS9 : OUT std_logic; \~Q14\ : IN std_logic;
QS10 : OUT std_logic; \~QI15\: IN std_logic;

115

\~QS0\ :
\~QS1\:
\~QS2\ :
\~QS3\:
\~QS4\ :
\~QS5\ :
\~QS6\ :
\~QS7\:
\~QS8\ :
\~QS9\ :

\~QS10\ :
\~QS11\:
\~QS12\:
\~QS13\:
\~QS14\ :
\~QS15\ :

);

OUT std_logic;
OUT std_logic;
OUT std_logic;
OUT std_logic;
OUT std _logic;
OUT std_logic;
OUT std_logic;
OUT std_logic;
OUT std_logic;
OUT std_logic;
OUT std_logic;
OUT std_logic;
OUT std_logic;
OUT std logic;
OUT std _logic;
OUT std logic

END COMPONENT;

COMPONENT BO_3t08DECODER

PORT (

DO :
: OUT std_logic;
: OUT std_logic;
D3:
: OUT std_logic;
: OUT std_logic;
: OUT std_logic;
: OUT std_logic;

D1
D2

D4
D5
D6
D7

OUT std_logic;

OUT std_logic;

Enable : IN std_logic;

SelectO :
Selectl :
Select2 :

)

IN std_logic;
IN std_logic;
IN std_logic

END COMPONENT;

-- SIGNALS

SIGNAL N1271

: std_logic;
SIGNAL N1270 :
SIGNAL N1269 :
SIGNAL N1268 :
SIGNAL N1267 :
SIGNAL N1266 :
SIGNAL N1265 :
SIGNAL N1264 :
SIGNAL N1259 :
SIGNAL N1258 :
SIGNAL N1257 :
SIGNAL N1256 :
SIGNAL N1254 :
SIGNAL N1209 :
SIGNAL N1208 :
SIGNAL N1207 :
SIGNAL N1206 :
SIGNAL N1205 :

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

116

SIGNAL N1189 :
SIGNAL N1188:
SIGNAL N1187 :
SIGNAL N1186 :
SIGNAL N1185 :
SIGNAL N1184 :
SIGNAL N1183:
SIGNAL N1182:

SIGNAL N1181

SIGNAL N1111
SIGNAL N1101
SIGNAL N1087
SIGNAL N1086
SIGNAL N1085
SIGNAL N1084
SIGNAL N1083

SIGNAL N1081

SIGNAL N1071

SIGNAL N1061

SIGNAL N1051

SIGNAL N1031

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

: std_logic;
SIGNAL N1175:
SIGNAL N1139:
SIGNAL N1138:
SIGNAL N1137 :
SIGNAL N1136:
SIGNAL N1135:
SIGNAL N1134 :
SIGNAL N1133 :
SIGNAL N1132:
SIGNAL N1124 :
SIGNAL N1113:
SIGNAL N1112:

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

: std_logic;
SIGNAL N1110 :
: std_logic;
SIGNAL N1088 :
: std_logic;
: std_logic;
: std_logic;
:std_logic;
:std_logic;
SIGNAL N1082 :

std_logic;

std_logic;

std_logic;

: std_logic;
SIGNAL N1080 :
SIGNAL N1079 :
SIGNAL N1073 :
SIGNAL N1072 :
: std_logic;
: std_logic;
SIGNAL N1060 :
SIGNAL N1059 :
SIGNAL N1058 :
SIGNAL N1057 :
SIGNAL N1055 :
SIGNAL N1054 :
SIGNAL N1053 :
SIGNAL N1052 :

std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

: std_logic;
SIGNAL N1035 :
SIGNAL N1034 :
SIGNAL N1033 :
SIGNAL N1032 :

std_logic;
std_logic;
std_logic;
std_logic;

: std_logic;
SIGNAL N1030 :
SIGNAL N1029 :
SIGNAL N1028 :
SIGNAL N1027 :

std_logic;
std_logic;
std_logic;
std_logic;

SIGNAL N1024 :

SIGNAL N1021

SIGNAL N1020 :
SIGNAL N1019 :
SIGNAL N1010 :
SIGNAL N1009 :
SIGNAL N1008 :
SIGNAL N1007 :
SIGNAL N1006 :
SIGNAL N1005 :
SIGNAL N1004 :
SIGNAL N1002 :

SIGNAL N1001

SIGNAL N1000 :

SIGNAL N999 :
SIGNAL N998 :
SIGNAL N997 :
SIGNAL N996 :
SIGNAL N995 :
SIGNAL N994 :
SIGNAL N993 :
SIGNAL N988 :
SIGNAL N985 :
SIGNAL N984 :
SIGNAL N983 :
SIGNAL N982
SIGNAL N981
SIGNAL N980
SIGNAL N979
SIGNAL N978
SIGNAL N970
SIGNAL N959 :
SIGNAL N958 :
SIGNAL N957 :
SIGNAL N956 :
SIGNAL N955 :
SIGNAL N954 :
SIGNAL N952 :
SIGNAL N934 :
SIGNAL N933 :
SIGNAL N932 :
SIGNAL N931
SIGNAL N930 :
SIGNAL N929 :
SIGNAL N928 :
SIGNAL N927 :
SIGNAL N926 :
SIGNAL N925 :
SIGNAL N919 :
SIGNAL N918 :
SIGNAL N917 :
SIGNAL N907 :
SIGNAL N906 :
SIGNAL N905 :
SIGNAL N904 :
SIGNAL N903 :

std_logic;
: std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
: std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

: std_logic;
: std_logic;
: std_logic;
: std_logic;
: std_logic;
: std_logic;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

: std_logic;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

117

SIGNAL N902 :
SIGNAL N896 :
SIGNAL N895 :
SIGNAL N894 :
SIGNAL N893 :
SIGNAL N8§92 :

SIGNAL N§91

SIGNAL N851
SIGNAL N850
SIGNAL N8§48
SIGNAL N8§47
SIGNAL N8§46
SIGNAL N845

SIGNAL N841

SIGNAL N8§21

SIGNAL N811

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

: std_logic;
SIGNAL N890 :
SIGNAL N889 :
SIGNAL N888 :
SIGNAL N886 :
SIGNAL N885 :
SIGNAL N884 :
SIGNAL N883 :
SIGNAL N882 :
SIGNAL N872 :
SIGNAL N870 :
SIGNAL N867 :
SIGNAL N865 :
SIGNAL N856 :
SIGNAL N855 :
SIGNAL N854 :
SIGNAL N853 :
SIGNAL N852 :
: std_logic;
: std_logic;
: std_logic;
: std_logic;
:std_logic;
:std_logic;
SIGNAL N844 :
SIGNAL N843 :
SIGNAL N842 :
:std_logic;
SIGNAL N840 :
SIGNAL N839 :
SIGNAL N834 :
SIGNAL N833 :
SIGNAL N832:
SIGNAL N823 :
SIGNAL N822 :

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;
std_logic;

std_logic;
std logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

: std_logic;
SIGNAL N820 :
SIGNAL N819 :
SIGNAL N818 :
SIGNAL N817 :
SIGNAL N815:
SIGNAL N814 :
SIGNAL N813 :
SIGNAL N812:

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

:std_logic;
SIGNAL N810 :
SIGNAL N809 :
SIGNAL N808 :
SIGNAL N807 :
SIGNAL N806 :

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

SIGNAL N798 :
SIGNAL N790 :
SIGNAL N789 :
SIGNAL N788 :
SIGNAL N787 :
SIGNAL N786 :
SIGNAL N785 :
SIGNAL N784 :
SIGNAL N783 :
SIGNAL N782 :

SIGNAL N781

SIGNAL N761

SIGNAL N755
SIGNAL N754
SIGNAL N742
SIGNAL N741
SIGNAL N740
SIGNAL N739

SIGNAL N731

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

: std_logic;
SIGNAL N780 :
SIGNAL N770 :
SIGNAL N769 :
SIGNAL N768 :
SIGNAL N767 :
SIGNAL N766 :
SIGNAL N764 :
SIGNAL N762 :

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

: std_logic;
SIGNAL N760 :
SIGNAL N759 :
SIGNAL N758 :
SIGNAL N757 :
SIGNAL N756 :
: std_logic;
: std_logic;
: std_logic;
: std_logic;
: std_logic;
: std_logic;
SIGNAL N738 :
SIGNAL N737:
SIGNAL N736:
SIGNAL N735:
SIGNAL N734 :
SIGNAL N733:

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

: std_logic;
SIGNAL N730 :
SIGNAL N729 :
SIGNAL N728 :
SIGNAL N718 :
SIGNAL N717 :
SIGNAL N716 :
SIGNAL N714 :
SIGNAL N710 :
SIGNAL N709 :
SIGNAL N708 :
SIGNAL N707 :
SIGNAL N706 :
SIGNAL N705 :
SIGNAL N704 :
SIGNAL N703 :
SIGNAL N695 :
SIGNAL N684 :
SIGNAL N683 :

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

118

SIGNAL N682 :
: std_logic;
SIGNAL N678 :
SIGNAL N669 :
SIGNAL N668 :
SIGNAL N667 :
SIGNAL N666 :
SIGNAL N665 :

SIGNAL N681

SIGNAL N661

SIGNAL N611
SIGNAL N608
SIGNAL N607
SIGNAL N606
SIGNAL N605

SIGNAL N601

SIGNAL N591

SIGNAL N571

SIGNAL N561

std_logic;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

: std_logic;
SIGNAL N660 :
SIGNAL N659 :
SIGNAL N658 :
SIGNAL N657 :
SIGNAL N656 :
SIGNAL N655 :
SIGNAL N654 :
SIGNAL N653 :
SIGNAL N652 :
SIGNAL N648 :
SIGNAL N644 :
SIGNAL N616 :
SIGNAL N615 :
SIGNAL N614 :
SIGNAL N613 :
SIGNAL N612 :
: std_logic;
: std_logic;
: std_logic;
:std_logic;
:std_logic;
SIGNAL N604 :
SIGNAL N603 :
SIGNAL N602 :
:std_logic;
SIGNAL N600 :
SIGNAL N595 :
SIGNAL N593 :
SIGNAL N592 :

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;
std_logic;

std_logic;
std logic;
std_logic;
std_logic;

: std_logic;
SIGNAL N590 :
SIGNAL N589 :
SIGNAL N573 :
SIGNAL N572 :
: std_logic;
SIGNAL N570 :
SIGNAL N569 :
SIGNAL N568 :
SIGNAL N567 :
SIGNAL N566 :
SIGNAL N565 :

std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

:std_logic;
SIGNAL N559 :
SIGNAL N556 :
SIGNAL NS555 :
SIGNAL N554 :
SIGNAL N553 :

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

SIGNAL N552 :

SIGNAL N551

SIGNAL N541

SIGNAL N521

SIGNAL N472
SIGNAL N471
SIGNAL N470
SIGNAL N469
SIGNAL N468
SIGNAL N467

SIGNAL N441

std_logic;

: std_logic;
SIGNAL N550 :
SIGNAL N549 :
SIGNAL N543 :
SIGNAL N542 :

std_logic;
std_logic;
std_logic;
std_logic;

: std_logic;
SIGNAL N530 :
SIGNAL N529 :
SIGNAL N528 :
SIGNAL N526 :
SIGNAL N523 :
SIGNAL N522:
: std_logic;
SIGNAL N520 :
SIGNAL N519:
SIGNAL N518 :
SIGNAL N517:
SIGNAL N516 :
SIGNAL N508 :
SIGNAL N497 :
SIGNAL N496 :
SIGNAL N495 :
SIGNAL N494 :
SIGNAL N490 :
: std_logic;
: std_logic;
: std_logic;
: std_logic;
: std_logic;
: std_logic;
SIGNAL N466 :
SIGNAL N465 :
SIGNAL N464 :
SIGNAL N463 :
SIGNAL N457 :
SIGNAL N456 :
SIGNAL N455 :
SIGNAL N445 :
SIGNAL N444 :
SIGNAL N443 :
SIGNAL N442 :

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

: std_logic;
SIGNAL N439 :
SIGNAL N438 :
SIGNAL N437 :
SIGNAL N436 :
SIGNAL N435 :
SIGNAL N419 :
SIGNAL N418 :
SIGNAL N417 :
SIGNAL N416 :
SIGNAL N415 :
SIGNAL N414 :
SIGNAL N413 :
SIGNAL N412 :

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

119

SIGNAL N411

SIGNAL N391

SIGNAL N381

SIGNAL N366
SIGNAL N365
SIGNAL N364
SIGNAL N363
SIGNAL N362

SIGNAL N341

SIGNAL N311

SIGNAL N301
SIGNAL N291

: std_logic;
SIGNAL N408 :
SIGNAL N405 :
SIGNAL N403 :
SIGNAL N394 :
SIGNAL N393 :
SIGNAL N392 :

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

: std_logic;
SIGNAL N390 :
SIGNAL N389 :
SIGNAL N388 :
SIGNAL N386 :
SIGNAL N385 :
SIGNAL N384 :
SIGNAL N383 :
SIGNAL N382:

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

. std_logic;
SIGNAL N380 :
SIGNAL N379 :
SIGNAL N378 :
SIGNAL N377 :
SIGNAL N372 :
SIGNAL N369 :
SIGNAL N368 :
SIGNAL N367 :
: std_logic;
: std_logic;
: std_logic;
:std_logic;
:std_logic;
SIGNAL N354 :
SIGNAL N343 :
SIGNAL N342:
:std_logic;
SIGNAL N340 :
SIGNAL N336:
SIGNAL N318:
SIGNAL N317:
SIGNAL N316:
SIGNAL N315:
SIGNAL N314 :
SIGNAL N313:
SIGNAL N312:
: std_logic;
SIGNAL N310 :
SIGNAL N309 :
SIGNAL N303 :
SIGNAL N302 :

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;
std_logic;

std_logic;
std logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;
std_logic;
std_logic;

:std_logic;
:std_logic;
SIGNAL N290 :
SIGNAL N289 :
SIGNAL N288 :
SIGNAL N287 :
SIGNAL N285 :
SIGNAL N284 :

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

SIGNAL N283 : std_logic; SIGNAL N165 : std_logic;

SIGNAL N282 : std_logic; SIGNAL N164 : std _logic;
SIGNAL N281 : std_logic; SIGNAL N163 : std_logic;
SIGNAL N265 : std_logic; SIGNAL N162 : std_logic;
SIGNAL N264 : std_logic; SIGNAL N161 : std_logic;
SIGNAL N263 : std_logic; SIGNAL N160 : std_logic;
SIGNAL N262 : std_logic; SIGNAL N159 : std_logic;
SIGNAL N261 : std_logic; SIGNAL N158 : std_logic;
SIGNAL N260 : std_logic; SIGNAL N157 : std_logic;
SIGNAL N259 : std _logic; SIGNAL N156 : std_logic;
SIGNAL N258 : std_logic; SIGNAL N155 : std_logic;
SIGNAL N257 : std_logic; SIGNAL N149 : std_logic;
SIGNAL N254 : std_logic; SIGNAL N148 : std _logic;
SIGNAL N251 : std_logic; SIGNAL N147 : std_logic;
SIGNAL N249 : std_logic; SIGNAL N137 : std_logic;
SIGNAL N240 : std_logic; SIGNAL N136 : std_logic;
SIGNAL N239 : std_logic; SIGNAL N135 : std_logic;
SIGNAL N238 : std_logic; SIGNAL N134 : std_logic;
SIGNAL N237 : std_logic; SIGNAL N133 : std_logic;
SIGNAL N236 : std_logic; SIGNAL N100 : std_logic;
SIGNAL N235 : std_logic; SIGNAL N95 : std_logic;
SIGNAL N234 : std_logic; SIGNAL N86 : std_logic;
SIGNAL N232 : std_logic; SIGNAL N85 : std_logic;
SIGNAL N231 : std_logic; SIGNAL N84 : std_logic;
SIGNAL N230 : std_logic; SIGNAL N83 : std_logic;
SIGNAL N229 : std_logic; SIGNAL N82 : std_logic;
SIGNAL N228 : std_logic; SIGNAL N81 : std_logic;
SIGNAL N227 : std_logic; SIGNAL N8O : std_logic;
SIGNAL N226 : std_logic; SIGNAL N78 : std_logic;
SIGNAL N225 : std_logic; SIGNAL N77 : std_logic;
SIGNAL N224 : std_logic; SIGNAL N76 : std_logic;
SIGNAL N223 : std_logic; SIGNAL N75 : std_logic;
SIGNAL N218 : std_logic; SIGNAL N74 : std_logic;
SIGNAL N215 : std_logic; SIGNAL N73 : std_logic;
SIGNAL N214 : std_logic; SIGNAL N72 : std_logic;
SIGNAL N213 : std_logic; SIGNAL N71 : std_logic;
SIGNAL N212 : std_logic; SIGNAL N70 : std_logic;
SIGNAL N211 : std_logic; SIGNAL N69 : std_logic;
SIGNAL N210 : std_logic; SIGNAL N64 : std_logic;
SIGNAL N209 : std_logic; SIGNAL N28 : std_logic;
SIGNAL N208 : std_logic; SIGNAL N25 : std_logic;
SIGNAL N200 : std_logic; SIGNAL N22 : std_logic;
SIGNAL N189 : std_logic; SIGNAL N19 : std_logic;
SIGNAL N188 : std_logic; SIGNAL N16 : std_logic;
SIGNAL N187 : std_logic; SIGNAL N13 : std_logic;
SIGNAL N186 : std_logic; SIGNAL N10 : std_logic;
SIGNAL N182 : std_logic; SIGNAL N7 : std_logic;
SIGNAL N174 : std_logic; SIGNAL N4 : std_logic;
SIGNAL N173 : std_logic; SIGNAL N1 : std_logic;
SIGNAL N172 : std_logic;

SIGNAL N171 : std_logic; -- INSTANCES

SIGNAL N170 : std_logic; BEGIN

SIGNAL N169 : std_logic; DTM_SigFanout 21 : DTM_SigFanout
SIGNAL N168 : std_logic; PORT MAP(

SIGNAL N167 : std_logic; Sigln => Gain3,
SIGNAL N166 : std_logic; SigOutl => N1,

120

SigOut2 => N1257 DRFM3 =>N166,

); DRFM4 => N165,
DTM SigFanout 28 : DTM_SigFanout Gain0 => N10,
PORT MAP(Gainl => N7,
Sigln => Gain2, Gain2 => N4,
SigOutl => N4, Gain3 => N1,
SigOut2 => N1258 10 => N148,
); I1 =>N147,
DTM_SigFanout 29 : DTM_SigFanout 12 =>N257,
PORT MAP(I3 => N258,
Sigln => Gainl, 14 => N259,
SigOutl => N7, I5 => N260,
SigOut2 =>N1259 16 => N261,
); 17 =>N262,
DTM SigFanout 30 : DTM_SigFanout I8 =>N263,
PORT MAP(19 => N264,
Sigln => Gain0, 110 => N265,
SigOutl => N10, 111 =>N137,
SigOut2 => N1256 112 =>N136,
); 113 =>N135,
DTM_SigFanout 22 : DTM_SigFanout 114 => N134,
PORT MAP(115=>N133,
Sigln => CLK, IncO =>N173,
SigOutl => N13, Incl =>N172,
SigOut2 => N1254 Inc2 =>N171,
); Inc3 =>N170,
DTM_SigFanout 23 : DTM_SigFanout Inc4 => N174,
PORT MAP(IOV =>N251,
Sigln => URB, IS0 => OutPadISO0,
SigOutl => N16, IS1 => OutPadIS1,
SigOut2 => N1020 IS2 => OutPadIS2,
); IS3 => OutPadIS3,
DTM SigFanout 24 : DTM_SigFanout IS4 => OutPadIS4,
PORT MAP(IS5 => OutPadISS,
Sigln => PSV, IS6 => OutPadIS6,
SigOutl =>N19, IS7 => OutPadIS7,
SigOut2 => N954 IS8 => OutPadIS8,
); 1S9 => OutPadIS9,
DTM_SigFanout 25 : DTM_SigFanout IS10 => OutPadIS10,
PORT MAP(IS11 => OutPadIS11,
Sigln => UNP, IS12 => OutPadIS12,
SigOutl => N22, IS13 => OutPadIS13,
SigOut2 =>N1101 IS14 => OutPadIS14,
); IS15 => OutPadIS15,
DTM SigFanout 26 : DTM_SigFanout ISOV => OutPadISOV,
PORT MAP(ODVin => N28,
Sigln => Oper, ODVout => ODVout,
SigOutl => N25, Oper => N25,
SigOut2 => N955 PRB =>N1271,
); PSV =>N19,
CG_RangeBinModulator 8 : Q0 =>N164,
CG_RangeBinModulator PORT MAP(QI =>NI163,
CLK =>N13, Q2 =>N162,
DRFMO0 =>N169, Q3 =>NIl6l,
DRFM1 =>N168, Q4 =>N160,
DRFM2 =>N167, Q5 =>N159,

121

Q6 =>N158, \~IS10\ =>\OutPad~IS10\,

Q7 =>N157, \~IST1\=>\OutPad~IS11\,
Q8 =>N156, \~IS12\ =>\OutPad~IS12\,
Q9 =>N155, \~IS13\ =>\OutPad~IS13\,
Q10 =>N28l, \~IS14\ =>\OutPad~IS14\,
Q11 =>N282, \~IS15\ =>\OutPad~IS15\,
Q12 =>N283, \~QO0\ =>N95,

Q13 =>N284, \~Q1\=>N215,

Q14 =>N285, \~Q2\=>N214,
Q15=>N149, \~Q3\ =>N213,

QOV =>N100, \~Q4\=>N212,

QS0 => OutPadQSO0, \~Q5\=>N211,
QS1=>OutPadQSl, \~Q6\ =>N210,

QS2 => OutPadQS2, \~Q7\ =>N209,

QS3 => OutPadQS3, \~Q8\ =>N208,

QS4 => OutPadQS4, \~Q9\ => N8&6,

QS5 => OutPadQS5, \~Q10\ => N85,

QS6 => OutPadQSe6, \~Q11\ => N84,

QS7 => OutPadQS7, \~Q12\ => N83,

QS8 => OutPadQS8, \~Q13\=>N82,

QS9 => OutPadQS9, \~Q14\=>N8l,

QS10 => OutPadQS10, \~Q15\=> N80,

QS11 => OutPadQS11, \~QS0\ =>\OutPad~QS0\,
QS12 => OutPadQS12, \~QS1\ =>\OutPad~QS1\,
QS13 => OutPadQS13, \~QS2\ =>\OutPad~QS2\,
QS14 => OutPadQS14, \~QS3\ =>\OutPad~QS3\,
QS15 => OutPadQS15, \~QS4\ =>\OutPad~QS4\,
QSOV => OutPadQSOV, \~QS5\ =>\OutPad~QS5\,
UNP => N22, \~QS6\ => \OutPad~QS6\,
URB =>N16, \~QS7\ =>\OutPad~QS7\,
\~10\ => N200, \~QS8\ =>\OutPad~QS8\,
\~I1\=> N78, \~QS9\ =>\OutPad~QS9\,
\~12\=> N77, \~QS10\ =>\OutPad~QS10\,
\~I3\ =>N76, \~QS11\=>\OutPad~QS11\,
\~14\ =>NT75, \~QS12\ =>\OutPad~QS12\,
\~I5\=>N74, \~QS13\ =>\OutPad~QS13\,
\~16\ => N73, \~QS14\ =>\OutPad~QS14\,
\~I7\ =>N72, \~QS 15\ =>\OutPad~QS15\
\~I8\ =>NT71,);

\~I9\ => N70, CG_RangeBinModulator 7
\~110\=> N69, CG_RangeBinModulator PORT MAP(
\~I11\=>N189, CLK =>N13,

\~112\ =>N188, DRFMO0 => N169,
\~113\=>N187, DRFM1 =>N168,

\~114\ => N186, DRFM2 =>N167,

\~115\ => N64, DRFM3 =>N166,

\~ISO\ => \OutPad~IS0\, DRFM4 =>N165,

\~IS1\ =>\OutPad~IS1\, Gain0 => N10,

\~IS2\ =>\OutPad~IS2\, Gainl => N7,

\~IS3\ =>\OutPad~IS3\, Gain2 => N4,

\~IS4\ =>\OutPad~IS4\, Gain3 => N1,

\~IS5\ =>\OutPad~IS5\, 10 => N302,

\~IS6\ => \OutPad~IS6\, 11 =>N301,

\~IS7\ =>\OutPad~IS7\, 12 =>N411,

\~IS8\ =>\OutPad~IS8\, I3 =>N412,

\~ISO\ => \OutPad~IS9\, 14 =>N413,

122

I5=>N414, QS0 =>N164,

16 =>N415, QS1=>N163,
17 =>N416, QS2 =>N162,
18 =>N417, QS3 =>NI6l,
19 =>N418, QS4 =>N160,
110 =>N419, QS5 =>N159,
111 =>N291, QS6 => N158,
112 =>N290, QS7=>N157,
113 => N289, QS8 =>N156,
114 => N288, QS9 => N155,
115 =>N287, QS10=>N281,
IncO =>N173, QS11=>N282,
Incl =>N172, QS12 =>N283,
Inc2 =>N171, QS13 =>N284,
Inc3 =>N170, QS14 =>N285,
Inc4 =>N174, QS15=>N149,
IOV =>N405, QSOV =>N100,
IS0 =>N148, UNP =>N22,
IS1 =>N147, URB =>N16,
1S2 =>N257, \~I0\ => N354,
1S3 => N258, \~I1\=>N232,
1S4 =>N259, \~I2\ => N231,
IS5 =>N260, \~I3\ =>N230,
I1S6 => N261, \~I4\ =>N229,
IS7 =>N262, \~I5\ =>N228,
IS8 =>N263, \~16\ =>N227,
1S9 => N264, \~I7\ => N226,
IS10 => N265, \~I8\ => N225,
IS11=>N137, \~I9\ => N224,
IS12 =>N136, \~110\ => N223,
IS13 =>N135, \~I11\=>N343,
1S14 =>N134, \~112\ =>N342,
IS15=>N133, \~I13\=>N341,
ISOV =>N251, \~114\ => N340,
ODVin =>N182, \~I15\=>N218,
ODVout => N28, \~IS0\ => N200,
Oper => N25, \~IS1\ =>NT78,
PRB =>N1270, \~IS2\ =>N77,
PSV =>N19, \~IS3\ => N76,
Q0 =>N318, \~IS4\ => N75,
Q1 =>N317, \~IS5\=>N74,
Q2 =>Na3le6, \~IS6\ => N73,
Q3 =>N315, \~IS7\=>N72,
Q4 =>N314, \~IS8\ =>NT71,
Q5=>N313, \~IS9\ => N70,
Q6 =>N312, \~IS10\ =>N69,
Q7 =>N311, \~IST11\=>N189,
Q8 =>N310, \~IS12\=>N188,
Q9 =>N309, \~IS13\=>N187,
Q10 =>N435, \~IS14\ => N186,
Q11 =>N436, \~IS15\=> N64,
Q12 =>N437, \~QO0\ => N249,
Q13 =>N438, \~Q1\=>N369,
Q14 =>N439, \~Q2\ => N368,
Q15=>N303, \~Q3\ => N367,
QOV =>N254, \~Q4\ => N366,

123

\~Q5\ =>N365, IncO =>N173,

\~Q6\ => N364, Incl =>N172,
\~Q7\=>N363, Inc2 =>NI171,
\~Q8\ =>N362, Inc3 =>N170,
\~QI9\ => N240, Inc4 =>N174,
\~Q10\ =>N239, IOV =>N559,
\~Q11\ =>N238, IS0 =>N302,
\~Q12\ =>N237, IS1=>N301,
\~Q13\=>N236, IS2 =>N411,
\~Q14\ =>N235, IS3 =>N412,
\~QI15\=>N234, IS4 =>N413,
\~QSO0\ =>N95, IS5 =>N414,
\~QS1\=>N215, IS6 =>N415,
\~QS2\ =>N214, IS7 =>N416,
\~QS3\=>N213, IS8 =>N417,
\~QS4\ =>N212, IS9 =>N418,
\~QS5\=>N211, IS10 => N419,
\~QS6\ =>N210, IS11 =>N291,
\~QS7\ =>N209, IS12 => N290,
\~QS8\ =>N208, IS13 =>N289,
\~QS9\ => N86, IS14 => N288,
\~QS10\=> N85, IS15=>N287,
\~QS11\=>Ng4, ISOV =>N405,
\~QS12\ => N8§3, ODVin => N336,
\~QS13\=>Ng2, ODVout => N182,
\~QS14\=> N81, Oper => N25,
\~QS15\=>N80 PRB => N1269,
); PSV =>N19,
CG_RangeBinModulator 6 : Q0 =>N472,
CG_RangeBinModulator PORT MAP(Q1 =>N471,
CLK =>N13, Q2 =>N470,
DRFMO0 => N169, Q3 =>N469,
DRFM1 => N168, Q4 =>N468,
DRFM2 =>N167, Q5 =>N467,
DRFM3 => N166, Q6 => N466,
DRFM4 => N165, Q7 => N465,
Gain0 => N10, Q8 => N464,
Gainl => N7, Q9 => N463,
Gain2 => N4, Q10 =>N589,
Gain3 => N1, Q11 =>N590,
10 => N456, Q12 =>N591,
I1 =>N455, Q13 =>N592,
12 =>N565, Q14 =>N593,
I3 => N566, Q15 =>N457,
14 =>N567, QOV =>N408,
I5 =>N568, QS0 =>N318,
16 => N569, QS1=>N317,
17 =>N570, QS2 =>N316,
18 =>N571, QS3 =>N315,
19 =>N572, QS4 =>N314,
110 => N573, QS5 =>N313,
111 => N445, QS6=>N312,
112 =>N444, QS7=>N311,
113 =>N443, QS8 =>N310,
114 =>N442, QS9 =>N309,
115 =>N441, QS10 =>N435,

124

QS11 =>N436, \~QS0\ => N249,
QS12 =>N437, \~QS1\ =>N369,
QS13 =>N438, \~QS2\ => N368,
QS14 =>N439, \~QS3\ =>N367,
QS15 =>N303, \~QS4\ => N366,
QSOV =>N254, \~QS5\ => N365,
UNP => N22, \~QS6\ => N364,
URB =>N16, \~QS7\=>N363,
\~I0\ => N508, \~QS8\ => N362,
\~I1\=> N386, \~QS9\ => N240,
\~I2\ => N385, \~QS10\=>N239,
\~I3\ => N384, \~QS11\=>N238,
\~I4\ => N383, \~QS12\=>N237,
\~I5\ =>N382, \~QS13\=>N236,
\~I6\ => N381, \~QS14\ =>N235,
\~I7\ =>N380, \~QS15\=>N234
\~I8\ =>N379,);

\~I9\ => N378, CG_RangeBinModulator 5
\~I110\=>N377, CG_RangeBinModulator PORT MAP(

\~I11\ => N497,
\~112\ => N496,
\~113\ => N495,
\~114\ => N494,
\~I15\=>N372,
\~ISO\ => N354,

CLK =>N13,

DRFMO0 => N169,
DRFMI1 => N168,
DRFM2 => N167,
DRFM3 => N166,
DRFM4 => N165,

\=IST\ => N232, Gain0 => N10,
\~IS2\ => N231, Gainl => N7,
\~IS3\ => N230, Gain2 => N4,
\~IS4\ => N229, Gain3 => N1,
\~IS5\ => N228, 10 => N717,
\~IS6\ => N227, 11 => N718,
\~IS7\ => N226, 12 => N608,
\~IS8\ => N225, I3 => N607,
\~IS9\ => N224, 14 => N606,
\~IS10\ => N223, 15 => N605,
\-IST1\ => N343, 16 => N604,
\-IS12\ => N342, 17 => N603,
\-IS13\ => N341, I8 => N602,
\~IS14\ => N340, 19 => N601,
\~IS15\ => N218, 110 => N600,
\~QO0\ => N403, 111 => N728,
\~Q1\ => N523, 112 => N729,
\~Q2\ => N522, 113 => N730,
\~Q3\ => N521, 114 => N731,
\~Q4\ => N520, 115 => N595,
\~Q5\ =>N519, Inc0 => N173,
\~Q6\ => N518, Incl => N172,
\~Q7\=>N517, Inc2 => N171,
\~Q8\ => N516, Inc3 => N170,
\~Q9\ => N394, Inc4 => N174,
\~Q10\ => N393, 10V => N561,
\~Q11\=>N392, IS0 => N456,
\~Q12\ => N391, IS1 => N455,
\~Q13\ => N390, IS2 => N565,
\~Q14\ => N389, 1S3 => N566,
\~Q15\ => N388, 1S4 => N567,

125

IS5 => N568,
IS6 => N569,
IS7 =>N570,
IS8 => N571,
IS9 => N572,
IS10 =>N573,
IS11 =>N445,
IS12 => N444,
IS13 => N443,
IS14 =>N442,
IS15 =>N441,
ISOV =>N559,
ODVin => N490,
ODVout => N336,
Oper => N25,
PRB => N1268,
PSV =>N19,
Q0 =>N733,
Q1 =>N734,
Q2 =>N735,
Q3 =>N736,
Q4 =>N737,
Q5 =>N738,
Q6 =>N739,
Q7 =>N740,
Q8 =>N741,
Q9 =>N742,
Q10=>N616,
Q11 =>N615,
Q12 =>N614,
Q13 =>N613,
Q14 =>N612,
Q15 =>N6l1,
QOV =>N714,
QS0 =>N472,
QS1=>N471,
QS2 =>N470,
QS3 =>N469,
QS4 =>N468,
QS5 =>N467,
QS6 => N466,
QS7 =>N465,
QS8 => N464,
QS9 =>N463,
QS10 =>N589,
QS11 =>N590,
QS12 =>N591,
QS13 =>N592,
QS14 =>N593,
QS15 =>N457,
QSOV =>N408,
UNP => N22,
URB => N16,
\~10\ => N541,
\~I1\ => N661,
\~I2\ => N660,

126

\~I3\ => N659,
\~I4\ => N658,
\~I5\ => N657,
\~16\ => N656,
\~I7\ => N655,
\~I8\ => N654,
\~I9\ => N653,
\~110\ => N652,
\~I11\=> N530,
\~112\ => N529,
\~113\ => N528,
\~114\ => N648,
\~115\ => N526,
\~ISO\ => N508,
\~IST\ => N386,
\~IS2\ => N385,
\~IS3\ => N384,
\~IS4\ => N383,
\~IS5\ => N382,
\~IS6\ => N381,
\~IS7\ => N380,
\~IS8\ => N379,
\~IS9\ => N378,
\~IS10\ => N377,
\~IS11\ => N497,
\~IS12\ => N496,
\~IS13\ => N495,
\~IS14\ => N494,
\~IS15\ => N372,
\~QO0\ => N678,
\~Q1\ => N556,
\~Q2\ => N555,
\~Q3\ => N554,
\~Q4\ => N’553,
\~Q5\ => N552,
\~Q6\ => N551,
\~Q7\ => N550,
\~Q8\ => N’549,
\~QI\ => N669,
\~Q10\ => N668,
\~Q11\ => N667,
\~Q12\ => N666,
\~Q13\ => N665,
\~Q14\ => N543,
\~Q15\ => N542,
\~QS0\ => N403,
\~QS1\ => N523,
\~QS2\ => N522,
\~QS3\ => N521,
\~QS4\ => N520,
\~QS5\ => N519,
\~QS6\ => N518,
\~QS7\=>N517,
\~QS8\ => N516,
\~QS9\ => N394,
\~QS10\ => N393,

\~QS11\=>N392, ISOV =>N561,

\~QS12\=>N391, ODVin => N644,
\~QS13\=>N390, ODVout => N490,
\~QS14\ =>N389, Oper => N955,
\~QS15\=>N388 PRB =>N1267,
); PSV =>N954,
CG_RangeBinModulator 4 : Q0 =>N780,
CG_RangeBinModulator PORT MAP(QI => N88S,
CLK =>N1254, Q2 =>N8g9,
DRFMO0 => N785, Q3 =>N8§90,
DRFM1 =>N784, Q4 =>N8§91,
DRFM2 =>N783, Q5 =>N8§92,
DRFM3 =>N782, Q6 =>N893,
DRFM4 =>N781, Q7 => N894,
Gain0 => N 1256, Q8 =>N895,
Gainl => N1259, Q9 =>N896,
Gain2 => N1258, Q10 =>N770,
Gain3 => N1257, Q11 =>N769,
10 => N764, Q12 =>N768,
11 =>N872, Q13 =>N767,
12 =>N762, Q14 => N766,
I3 =>N761, Q15 =>N902,
14 =>N760, QOV =>NT716,
I5 =>N759, QS0 =>N733,
16 => N758, QS1=>N734,
17 =>N757, QS2 =>N735,
18 => N756, QS3 =>N736,
19 => N755, QS4 =>N737,
110 => N754, QS5 =>N738,
111 => N882, QS6 =>N739,
112 =>N883, QS7=>N740,
113 => N884, QS8 =>N741,
114 => N885, QS9 =>N742,
115 =>N886, QS10 =>N616,
IncO => N789, QS11=>N615,
Incl => N788, QS12 =>N614,
Inc2 => N787, QS13=>N613,
Inc3 => N786, QS14=>N612,
Inc4 => N790, QS15=>N6l11,
IOV => N867, QSOV =>NT714,
IS0 =>N717, UNP =>N1101,
IS1=>N718, URB =>N1020,
IS2 =>N608, \~I0\ => N695,
1S3 =>N607, \~I1\=> NB815,
1S4 =>N606, \~12\ => N814,
IS5 =>N605, \~I3\ => N813,
IS6 =>N604, \~I14\ => N812,
IS7 =>N603, \~I5\ =>N811,
IS8 => N602, \~16\ => N810,
1S9 =>N601, \~I7\ => N809,
IS10 => N600, \~I8\ => N808,
IS11 =>N728, \~I9\ => N807,
IS12 =>N729, \~110\ => N806,
IS13 => N730, 11\ =>N684,
IS14 =>N731, \~112\ => N683,
IS15 => N595, \~113\=>N682,

127

);

\~114\ => N681,
\~115\ =>N817,
\~ISO\ => N541,
\-IST\=> N661,
\~IS2\ => N660),
\~IS3\ => N659,
\~IS4\ => N658,
\~IS5\ => N657,
\~IS6\ => N656,
\~IS7\ => N655,
\~IS8\ => N654,
\~IS9\ => N653,
\~IS10\ => N652,
\~IST1\ => N530,
\~IS12\ => N529,
\~IS13\ => N528,
\~IS14\ => N648,
\~IS15\ => N526,
\~QO\ => N832,
\~Q1\=>N710,
\~Q2\ => N709,
\~Q3\ => N708,
\~Q4\ => N707,
\~Q5\ => N706,
\~Q6\ => N705,
\~Q7\ => N704,
\~Q8\ => N703,
\~QO\ => N823,
\~Q10\ => N822,
\~Q11\=>N821,
\~Q12\ => N820,
\~Q13\ => N819,
\~Q14\ => N818,
\~Q15\ => N833,
\~QS0\ => N678,
\~QS1\ => N556,
\~QS2\ => N555,
\~QS3\ => N554,
\~QS4\ => N553,
\~QS5\ => N552,
\~QS6\ => N551,
\~QS7\ => N550,
\~QS8\ => N549,
\~QS9\ => N669,
\~QS10\ => N668,
\~QS11\ => N667,
\~QS12\ => N666,
\~QS13\ => N665,
\~QS14\ => N543,
\~QS15\ => N542

CG_RangeBinModulator 3

CG_RangeBinModulator PORT MAP(

CLK => N1254,
DRFMO0 => N785,
DRFMI1 => N784,

128

DRFM2 => N783,
DRFM3 =>N782,
DRFM4 => N781,
Gain0 => N1256,
Gainl => N1259,
Gain2 => N1258,
Gain3 => N1257,
10 =>N918,

I1 =>N917,

12 =>N1027,

13 =>N1028,

14 =>N1029,

15 =>N1030,

16 =>N1031,

17 =>N1032,

I8 =>N1033,

19 =>N1034,

110 =>N1035,
111 =>N907,

112 =>N906,

113 =>N905,

114 => N904,

115 =>N903,
Inc0 => N789,
Incl => N788,
Inc2 => N787,
Inc3 => N786,
Inc4 => N790,
IOV =>N1021,
IS0 =>N764,

IS1 =>N8&72,
IS2 =>N762,
IS3 =>N761,
1S4 => N760,
IS5 =>N759,
IS6 => N758,
IS7 =>N757,
IS8 =>N756,
IS9 =>N755,
IS10 => N754,
IS11 =>N882,
IS12 => N88&3,
IS13 => N8&4,
IS14 => N88S5,
IS15 => N886,
ISOV =>N867,
ODVin => N798,
ODVout => N644,
Oper => N955,
PRB => N1266,
PSV =>N954,
Q0 =>N0934,

Q1 =>N0933,

Q2 =>N0932,

Q3 =>N0931,

Q4 =>N930,

Q5 =>N929, \~IS9\ => N8&07,
Q6 =>N928, \~IS10\ => N8&06,
Q7 =>N927, \~IS11\ =>N684,
Q8 =>N926, \~IS12\ =>N683,
Q9 =>N925, \~IS13\ =>N682,
Q10=>N1051, \~IS14\ =>N68l,
Q11=>N1052, \~IS15\=>N817,
Q12 =>N1053, \~QO0\ =>N865,
Q13 =>N1054, \~QI\ =>N985,
Q14 =>N1055, \~Q2\ =>N984,
Q15=>N919, \~Q3\ =>N983,
QOV =>N870, \~Q4\ =>N982,
QS0 =>N780, \~Q5\ =>N981,
QS1 => N888, \~Q6\ =>N980,
QS2 =>N889, \~Q7\=>N0979,
QS3 =>N8§90, \~Q8\ =>N0978,
QS4 =>N891, \~Q9\ => N856,
QS5 =>N892, \~Q10\ =>N855,
QS6 =>N893, \~QI11\=>N854,
QS7 => N894, \~Q12\ =>N853,
QS8 => N§95, \~Q13\=>N852,
QS9 =>N896, \~Q14\ =>N851,
QS10=>N770, \~Q15\=> N850,
QS11=>N769, \~QS0\ => N832,
QS12 =>N768, \~QS1\=>N710,
QS13 =>N767, \~QS2\ =>N709,
QS14 =>N766, \~QS3\ =>N708,
QS15=>N902, \~QS4\ =>N707,
QSOV =>NT716, \~QS5\=>N706,
UNP =>N1101, \~QS6\ =>N705,
URB =>N1020, \~QS7\=>N704,
\~I0\ =>N970, \~QS8\=>N703,
\~I1\ => N848, \~QS9\ => N8§23,
\~12\ => N847, \~QS10\=>N822,
\~I3\ => N846, \~QS11\=>N821,
\~14\ => N845, \~QS12\=>N820,
\~I5\ => N844, \~QS13\=>N819,
\~16\ => N843, \~QS14\ =>Ng18,
\~I7\ =>N842, \~QS15\ =>N833
\~I8\ =>N841,);

\~19\ => N840, CG_RangeBinModulator 1
\~110\ => N839, CG_RangeBinModulator PORT MAP(
\~I11\=>N959, CLK =>N1254,
\~I12\ =>N958, DRFMO0 => N785,
\~I13\=>N957, DRFM1 =>N784,
\~114\ =>N956, DRFM2 =>N783,
\~I15\ => N834, DRFM3 =>N782,
\~ISO\ => N695, DRFM4 =>N781,
\~IS1\=>N815, Gain0 => N1256,
\~IS2\ =>N814, Gainl =>N1259,
\~IS3\=>N813, Gain2 => N1258,
\~IS4\ =>N812, Gain3 => N1257,
\~IS5\=>N8l11, 10 =>N1072,
\~IS6\ => N810, 11 =>NI1071,
\~IS7\ => N809, 12 =>N1181,
\~IS8\ => N808, I3 =>N1182,

129

14 =>N1183,
I15=>N1184,
16 =>N1185,
17 =>N1186,
18 =>N1187,
19 =>N1188,
110 =>N1189,
111 =>N1061,
112 =>N1060,
113 =>N1059,
114 =>N1058,
115 =>N1057,
Inc0 => N789,
Incl => N788,
Inc2 =>N787,
Inc3 => N786,
Inc4 => N790,
IOV =>N1175,
IS0 =>N918,
IS1 =>N917,
1S2 =>N1027,
1S3 =>N1028,
1S4 =>N1029,
IS5 =>N1030,
IS6 =>N1031,
IS7 =>N1032,
IS8 =>N1033,
1S9 =>N1034,
IS10 =>N1035,
IS11 =>N907,
IS12 =>N906,
IS13 =>N905,
1S14 => N904,
IS15 =>N903,
ISOV =>N1021,
ODVin => N952,
ODVout => N798,
Oper => N955,
PRB =>N1265,
PSV =>N954,
Q0 =>N1088,
Q1 =>N1087,
Q2 =>N1086,
Q3 =>N1085,
Q4 =>N1084,
Q5=>N1083,
Q6 =>N1082,
Q7=>N108l1,
Q8 =>N1080,
Q9 =>N1079,
Q10 =>N1205,
Q11 =>N1206,
Q12 =>N1207,
Q13 =>N1208,
Q14 =>N1209,
Q15=>N1073,

130

QOV =>N1024,
QS0 =>N934,
QS1 =>N933,
QS2 =>N932,
QS3 =>N931,
QS4 =>N930,
QS5 =>N929,
QS6 =>N928,
QS7=>N927,
QS8 =>N926,
QS9 =>N925,
QS10=>N1051,
QS11 =>N1052,
QS12 => N1053,
QS13 => N1054,
QS14 => N1055,
QS15=>N919,
QSOV => N870,
UNP =>N1101,
URB => N1020,
\~10\=> N1124,
\~I1\ => N1002,
\~I2\ => N1001,
\~I3\ => N 1000,
\~14\ => N999,
\~I5\ => N99§,
\~16\ => N997,
\~I7\ => N996,
\~I8\ => N995,
\~I9\ => N994,
\~110\ => N993,
W11\ =>N1113,
W12\ =>N1112,
113\ =>N1111,
\~114\=> N1110,
\~115\ => N988,
\~ISO\ => N970,
\~IST\ => N848,
\~IS2\ => N847,
\~IS3\ => N846,
\~IS4\ => N845,
\~IS5\ => N844,
\~IS6\ => N843,
\~IS7\ => N842,
\~IS8\ => N841,
\~IS9\ => N840,
\~IS10\ => N839,
\~IST1\ => N959,
\~IS12\ => N958,
\~IS13\ => N957,
\~IS14\ => N956,
\~IS15\ => N834,
\~Q0\ =>N1019,
\~QI\ => N1139,
\~Q2\ => N1138,
\~Q3\ => N1137,

);

\~Q4\ => N1136,
\~Q5\ =>N1135,
\~Q6\ => N1134,
\~Q7\=>N1133,
\~Q8\ =>N1132,
\~Q9\ =>N1010,
\~Q10\ => N1009,
\~QI11\=> N1008,
\~Q12\=>N1007,
\~Q13\=> N1006,
\~Q14\ => N1005,
\~Q15\ => N1004,
\~QS0\ => N865,
\~QS1\ => N985,
\~QS2\ => N984,
\~QS3\ => N983,
\~QS4\ => N982,
\~QS5\ => N981,
\~QS6\ => N980,
\~QS7\ => N979,
\~QS8\ => N978,
\~QS9\ => N856,
\~QS10\ => N855,
\~QS11\ => N854,
\~QS12\ => N853,
\~QS13\ => N852,
\~QS14\ => N851,
\~QS15\ => N850

CG_RangeBinModulator 2

CG_RangeBinModulator PORT MAP(

CLK =>N1254,
DRFMO0 => N785,
DRFMI1 => N784,
DRFM2 => N783,
DRFM3 =>N782,
DRFM4 =>N781,
Gain0 => N1256,
Gainl =>N1259,
Gain2 => N1258,
Gain3 =>N1257,
10 => InPadIo0),

11 => InPadIl,

12 => InPadI2,

13 => InPadI3,

14 => InPadl4,

15 => InPadI5,

16 => InPadl6,

17 => InPadl7,

18 => InPadlIs,

19 => InPadl9,
110 => InPadI 10,
111 => InPadIl1,
112 => InPadI12,
113 => InPadlI13,
114 => InPadI 14,

131

115 => InPadl15,
Inc0 => N789,
Incl => N788,
Inc2 => N787,
Inc3 => N786,
Inc4 => N790,
IOV => InPadIOV,
IS0 =>N1072,
IS1=>N1071,

IS2 =>N118l,

IS3 =>N1182,

IS4 =>N1183,

IS5 =>N1184,

IS6 =>N1185,

IS7 =>N1186,

IS8 =>N1187,

IS9 => N1188,
I1S10 =>N1189,
IS11 =>N1061,
IS12 => N1060,
IS13 =>N1059,
IS14 =>N1058,
IS15 =>N1057,
ISOV =>N1175,
ODVin => ODVin,
ODVout => N952,
Oper => N955,
PRB => N1264,
PSV =>N954,

Q0 => InPadQo,
QI =>InPadQl1,
Q2 => InPadQ?2,
Q3 => InPadQ3,
Q4 => InPadQ4,
Q5 =>InPadQ5,
Q6 => InPadQ6,
Q7 => InPadQ7,
Q8 => InPadQs,
Q9 => InPadQ9,
Q10 =>InPadQ10,
Q11 =>1InPadQl1,
Q12 =>InPadQ]12,
Q13 =>InPadQ13,
Q14 => InPadQ14,
Q15 =>InPadQl15,
QOV => InPadQOV,
QS0 =>N1088,
QS1 =>N1087,
QS2 =>N1086,
QS3 =>N1085,
QS4 =>N1084,
QS5 =>N1083,
QS6 =>N1082,
QS7 =>N1081,
QS8 =>N1080,
QS9 =>N1079,

QS10=>N1205,
QS11=>N1206,
QS12 =>N1207,
QS13 =>N1208,
QS14 =>N1209,
QS15=>N1073,
QSOV =>N1024,
UNP =>N1101,

URB =>N1020,

\~I0\ => \InPad~I0\,
\~I1\ =>\InPad~I1\,
\~I12\ =>\InPad~I2\,
\~I3\ =>\InPad~I3\,
\~I4\ => \InPad~I4\,
\~I5\ => \InPad~I5\,
\~I6\ => \InPad~I6\,
\~I7\ =>\InPad~I7\,
\~I8\ => \InPad~I8\,
\~I9\ =>\InPad~I9\,
\~I10\ =>\InPad~I10\,
\~I11\ =>\InPad~I11\,
\~112\ =>\InPad~I12\,
\~I13\ =>\InPad~113\,
\~114\ =>\InPad~114\,
\~I15\ =>\InPad~115\,
\~ISO\ => N1124,
\~IS1\ =>N1002,
\~IS2\ =>N1001,
\~IS3\=>N1000,
\~IS4\ =>N999,
\~IS5\=>N998,
\~IS6\ =>N997,
\~IS7\=>N996,
\~IS8\ =>N995,
\~IS9\ => N994,
\~IS10\=>N993,
\~IS11\=>N1113,
\~IS12\=>N1112,
\~IS13\=>N1111,
\~IS14\=>N1110,
\~IS15\=>N988,
\~QO0\ =>\InPad~QO0\,
\~Q1\ =>\InPad~Q1\,
\~Q2\ =>\InPad~Q2\,
\~Q3\ =>\InPad~Q3\,
\~Q4\ => \InPad~Q4\,
\~Q5\ => \InPad~Q5\,
\~Q6\ => \InPad~Q6\,
\~Q7\ =>\InPad~Q7\,
\~Q8\ =>\InPad~Q8\,
\~Q9\ => \InPad~Q9\,
\~Q10\ =>\InPad~Q10\,
\~Q11\=>\InPad~QI11\,
\~Q12\ =>\InPad~Q12\,
\~Q13\ =>\InPad~Q13\,
\~Q14\ =>\InPad~Q14\,

132

\~Q15\ =>\InPad~Q15\,
\~QS0\=>N1019,
\~QS1\=>N1139,
\~QS2\=>N1138,
\~QS3\=>N1137,
\~QS4\ =>N1136,
\~QS5\=>N1135,
\~QS6\=>N1134,
\~QS7\=>N1133,
\~QS8\=>N1132,
\~QS9\ =>N1010,
\~QS10\=>N1009,
\~QS11\=>N1008,
\~QS12\=>N1007,
\~QS13\=>N1006,
\~QS14\ =>N1005,
\~QS15\=>N1004
);
BO 3to8DECODER 1
BO 3t08DECODER PORT MAP(
D0 => N1264,
D1 =>N1265,
D2 =>N1266,
D3 =>N1267,
D4 =>N1268,
D5 =>N1269,
D6 =>N1270,
D7 =>NI1271,
Enable => ENABLE,
Select0 => RBinSelect0,
Select] => RBinSelectl,
Select2 => RBinSelect2
);
DTM SigFanout 20 : DTM_SigFanout
PORT MAP(
Sigln => IncO0,
SigOutl =>N173,
SigOut2 => N789
);
DTM_SigFanout 19 : DTM_SigFanout
PORT MAP(
Sigln => Incl,
SigOutl =>N172,
SigOut2 => N788
);
DTM_SigFanout 18 : DTM_SigFanout
PORT MAP(
Sigln => Inc2,
SigOutl =>N171,
SigOut2 => N787
);
DTM_SigFanout 16 : DTM_SigFanout
PORT MAP(
Sigln => Inc4,
SigOutl =>N174,
SigOut2 => N790

)
DTM SigFanout 14 : DTM_SigFanout
PORT MAP(
Sigln => DRFMI,
SigOutl => N168,
SigOut2 => N784
)i
DTM_SigFanout 13 : DTM_SigFanout
PORT MAP(
Sigln => DRFM2,
SigOutl =>N167,
SigOut2 => N783
)i
DTM SigFanout 12 : DTM_SigFanout
PORT MAP(
Sigln => DRFM3,
SigOutl => N166,
SigOut2 => N782

133

DTM SigFanout 11 : DTM_SigFanout
PORT MAP(
Sigln => DRFM4,
SigOutl => N165,
SigOut2 => N781
)
DTM_SigFanout 17 : DTM_SigFanout
PORT MAP(
Sigln => Inc3,
SigOutl =>N170,
SigOut2 => N786
)
DTM_SigFanout 1 : DTM_SigFanout
PORT MAP(
Sigln => DRFMO,
SigOutl =>N169,
SigOut2 => N785
)
END structural;

B. TEST BENCH FOR THE 8 RANGE BIN

-- Title : Test Bench for dtm_S8rbps
--Design :HB 8 RB

-- Author : Hakan Bergon

-- Company : NPS

-- File
$DSN\src\TestBench\dtm_8rbps TB.vhd

-- Generated : 8/19/2002, 5:09 PM

-- From : $DSN\src\dtm_8rbps.vhd

-- By : Active-HDL Built-in Test
Bench Generator ver. 1.2s

-- Description : Automatically
generated Test Bench for dtm_8rbps_tb

library ieee;
use ieee.std_logic 1164.all;

-- Add your library and
packages declaration here ...

entity dtm_8rbps_tb is
end dtm_8rbps_tb;

architecture TB_ARCHITECTURE of

dtm_8rbps_tb is

-- Component declaration of
the tested unit

component dtm_8rbps

port(

CLK : in std_logic;

DRFMO : in std_logic;

DRFMLI : in std_logic;

DRFM?2 : in std_logic;

DRFM3 : in std_logic;

DRFM4 : in std_logic;

ENABLE : in std_logic;

GainO : in std_logic;

Gainl : in std_logic;

Gain2 : in std_logic;

Gain3 : in std_logic;

IncO : in std_logic;

Incl : in std_logic;

Inc2 : in std_logic;

Inc3 : in std_logic;

Inc4 : in std_logic;

134

InPadIO : in std_logic;
InPadIl : in std_logic;
InPadlI2 : in std_logic;
InPadI3 : in std_logic;
InPadl4 : in std_logic;
InPadI5 : in std_logic;
InPadl6 : in std_logic;
InPadl7 : in std_logic;
InPadI8 : in std_logic;
InPadlI9 : in std_logic;
InPadI10 : in std_logic;
InPadIl1 : in std_logic;
InPadI12 : in std_logic;
InPadl13 : in std_logic;
InPadl14 : in std_logic;
InPadlI15 : in std_logic;
InPadIOV : in std_logic;
InPadQo : in std_logic;
InPadQ1 : in std_logic;
InPadQ?2 : in std_logic;
InPadQ3 : in std_logic;
InPadQ4 : in std_logic;
InPadQ5 : in std_logic;
InPadQ6 : in std_logic;
InPadQ7 : in std_logic;
InPadQ8 : in std_logic;
InPadQ9 : in std_logic;
InPadQ10 : in std_logic;
InPadQ11 : in std_logic;
InPadQ12 : in std_logic;
InPadQ13 : in std_logic;
InPadQ14 : in std_logic;
InPadQ15 : in std_logic;
InPadQOV : in std_logic;
\InPad~I0\ : in std_logic;
\InPad~I1\: in std_logic;
\InPad~I2\ : in std_logic;
\InPad~I3\ : in std_logic;
\InPad~I4\ : in std_logic;
\InPad~I5\ : in std_logic;
\InPad~I6\ : in std_logic;
\InPad~I7\ : in std_logic;
\InPad~I8\ : in std_logic;
\InPad~I9\ : in std_logic;
\InPad~I10\ : in std_logic;
\InPad~I11\: in std_logic;
\InPad~I12\ : in std_logic;
\InPad~I13\ : in std_logic;
\InPad~I14\ : in std_logic;
\InPad~I15\: in std_logic;
\InPad~QO0\ : in std_logic;
\InPad~Q1\ : in std_logic;
\InPad~Q2\ : in std_logic;
InPad~Q3\ : in std_logic;

\InPad~Q4\ :
\InPad~Q5\ :
\InPad~Q6\ :
\InPad~Q7\ :
\InPad~Q8\ :
\InPad~Q9\ :

\InPad~Q10\ :
\InPad~Q11\ :
\InPad~Q12\ :
\InPad~Q13\:
\InPad~Q14\ :
\InPad~Q15\ :

in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;

ODVin : in std_logic;
ODVout : out std_logic;
Oper : in std_logic;
OutPadISO0 : out std_logic;
OutPadIS1 : out std_logic;
OutPadIS2 : out std_logic;
OutPadIS3 : out std_logic;
OutPadIS4 : out std_logic;
OutPadISS5 : out std_logic;
OutPadIS6 : out std_logic;
OutPadIS7 : out std_logic;
OutPadIS8 : out std_logic;
OutPadIS9 : out std_logic;

OutPadIS10
OutPadIS11
OutPadIS12
OutPadIS13
OutPadIS14
OutPadIS15

\OutPad~IS7\ : out std_logic;
\OutPad~IS8\ : out std_logic;
\OutPad~IS9\ : out std_logic;

\OutPad~IS10\ :
\OutPad~IS11\ :
\OutPad~IS12\ :
\OutPad~IS13\ :
\OutPad~IS14\ :
\OutPad~IS15\ :
\OutPad~QSO0\ :
\OutPad~QSI\ :
\OutPad~QS2\ :
\OutPad~QS3\ :
\OutPad~QS4\ :
\OutPad~QS5\ :

out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;

: out std_logic;
: out std_logic;
: out std_logic;
:out std_logic;
:out std_logic;
:out std_logic;

OutPadISOV : out std_logic;

OutPadQSO0 :
OutPadQS1
OutPadQS2 :
OutPadQS3 :
OutPadQS4 :
OutPadQSS5 :
OutPadQS6 :
OutPadQS7 :
OutPadQS8 :
OutPadQS9 :
OutPadQS10
OutPadQS11
OutPadQS12
OutPadQS13
OutPadQS14
OutPadQS15

OutPadQSOV : out std_logic;

\OutPad~ISO\ :
\OutPad~IS1\ :
\OutPad~IS2\ :
\OutPad~IS3\ :
\OutPad~IS4\ :
\OutPad~IS5\ :
OutPad~IS6\ :

out std_logic;

: out std_logic;

out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
: out std_logic;
: out std_logic;
: out std_logic;
: out std_logic;
: out std_logic;
: out std_logic;

out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;

\OutPad~QS6\ : out std_logic;
\OutPad~QS7\ : out std_logic;
\OutPad~QS8\ : out std_logic;
\OutPad~QS9\ : out std_logic;
\OutPad~QS10\: out std logic;
\OutPad~QS11\: out std_logic;
\OutPad~QS12\: out std logic;
\OutPad~QS13\: out std_logic;
\OutPad~QS14\: out std logic;
\OutPad~QS15\: out std_logic;
PSV :in std_logic;
RBinSelect0 : in std_logic;
RBinSelect! : in std_logic;
RBinSelect2 : in std_logic;
UNP : in std_logic;

URB : in std_logic);

end component;

-- Stimulus signals - signals mapped to

the input and inout ports of tested entity
signal CLK : std logic;
signal DRFMO : std_logic;
signal DRFM1 : std_logic;
signal DRFM2 : std_logic;
signal DRFM3 : std_logic;
signal DRFM4 : std_logic;
signal ENABLE : std_logic;
signal Gain0 : std_logic;
signal Gainl : std_logic;
signal Gain2 : std_logic;
signal Gain3 : std_logic;
signal Inc0 : std_logic;
signal Inc1 : std_logic;

signal Inc2 : std_logic;
signal Inc3 : std_logic;
signal Inc4 : std_logic;

signal InPadlO :
signal InPadl1 :
signal InPadlI2 :
signal InPadI3 :
signal InPadl4 :

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

signal InPadl5 : std_logic;
signal InPadl6 : std_logic;
signal InPadI7 : std_logic;
signal InPadI8 : std_logic;
signal InPadlI9 : std_logic;
signal InPadI10 : std_logic;
signal InPadI11 : std_logic;
signal InPadI12 : std_logic;
signal InPadI13 : std_logic;
signal InPadl14 : std_logic;
signal InPadlI15 : std_logic;

signal InPadIOV :

std_logic;

signal InPadQO : std_logic;
signal InPadQ1 : std_logic;
signal InPadQ?2 : std_logic;
signal InPadQ3 : std_logic;
signal InPadQ4 : std_logic;
signal InPadQ5 : std_logic;
signal InPadQ6 : std_logic;
signal InPadQ7 : std_logic;
signal InPadQ8 : std_logic;
signal InPadQ9 : std_logic;

signal InPadQ10 :
signal InPadQ11 :
signal InPadQ12 :
signal InPadQ13 :
signal InPadQ14 :
signal InPadQ15 :

signal InPadQOV :

signal \InPad~I0\ :
signal \InPad~I1\ :
signal \InPad~I2\ :
signal \InPad~I3\ :
signal \InPad~I4\ :
signal \InPad~I5\ :
signal \InPad~I6\ :
signal \InPad~I7\ :
signal \InPad~I8\ :
signal \InPad~I9\ :

signal \InPad~I10\ :
signal \InPad~I11\:
signal \InPad~I12\ :
signal \InPad~I13\:
signal \InPad~I14\ :
signal \InPad~I15\:
signal \InPad~QO\ :
signal \InPad~Q1\ :
signal \InPad~Q2\ :
signal \InPad~Q?3\ :
signal \InPad~Q4\ :
signal \InPad~Q5\ :
signal \InPad~Q6\ :
signal \InPad~Q7\ :
signal \InPad~QS8\ :
signal \InPad~QO\ :
signal \InPad~Q10\ : std_logic;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

signal \InPad~Q11\ : std_logic;
signal \InPad~Q12\ : std_logic;
signal \InPad~Q13\ : std_logic;
signal \InPad~Q14\ : std_logic;
signal \InPad~Q15\ : std_logic;
signal ODVin : std_logic;
signal Oper : std_logic;

signal PSV : std_logic;

signal RBinSelect0 : std_logic;
signal RBinSelectl : std_logic;
signal RBinSelect2 : std_logic;
signal UNP : std_logic;

signal URB : std_logic;

-- Observed signals - signals

mapped to the output ports of tested entity

std_logic;

signal ODVout : std_logic;
signal OutPadISO : std_logic;
signal OutPadIS1 : std_logic;
signal OutPadIS2 : std_logic;
signal OutPadIS3 : std_logic;
signal OutPadIS4 : std logic;
signal OutPadIS5 : std_logic;
signal OutPadIS6 : std_logic;
signal OutPadIS7 : std_logic;
signal OutPadIS8 : std_logic;
signal OutPadIS9 : std_logic;
signal OutPadIS10 : std_logic;
signal OutPadIS11 : std_logic;
signal OutPadIS12 : std_logic;
signal OutPadIS13 : std_logic;
signal OutPadIS14 : std_logic;
signal OutPadIS15 : std_logic;
signal OutPadISOV

signal OutPadQS0 : std_logic;
signal OutPadQS1 : std_logic;
signal OutPadQS2 : std_logic;
signal OutPadQS3 : std_logic;
signal OutPadQS4 : std_logic;
signal OutPadQS5 : std_logic;
signal OutPadQS6 : std_logic;
signal OutPadQS?7 : std_logic;
signal OutPadQSS : std_logic;
signal OutPadQS9 : std_logic;
signal OutPadQS10: std_logic;
signal OutPadQS11: std_logic;
signal OutPadQS12: std_logic;
signal OutPadQS13: std_logic;
signal OutPadQS14: std_logic;
signal OutPadQS15: std_logic;
signal OutPadQSOV:std_logic;
signal \OutPad~ISO\: std_logic;
signal \OutPad~IS1\: std_logic;
signal \OutPad~IS2\: std_logic;
signal \OutPad~IS3\: std_logic;
signal \OutPad~IS4\: std_logic;

signal \OutPad~IS5\: std_logic;
signal \OutPad~IS6\: std_logic;
signal \OutPad~IS7\: std_logic;
signal \OutPad~IS8\: std_logic;
signal \OutPad~IS9\: std_logic;
signal\OutPad~IS10\:std_logic;
signal \OutPad~IS11\:std logic;
signal \OutPad~IS12\:std_logic;
signal \OutPad~IS13\:std_logic; InPadl9 => InPadl9,
signal \OutPad~IS14\ : std_logic; InPadI10 => InPadI10,
signal \OutPad~IS15\ : std_logic; InPadl11 => InPadll1,
signal \OutPad~QSO0\ : std_logic; InPadl12 => InPadl12,
signal \OutPad~QSI\ : std logic; InPadl13 => InPadI13,
signal \OutPad~QS2\ : std logic; InPadl14 => InPadI14,
signal \OutPad~QS3\ : std logic; InPadI15 => InPadI15,
signal \OutPad~QS4\ : std logic; InPadIlOV => InPadIlOV,
signal \OutPad~QS5\ : std_logic; InPadQ0 => InPadQ0,
signal \OutPad~QS6\ : std_logic; InPadQ1 => InPadQ1,
signal \OutPad~QS7\ : std_logic; InPadQ2 => InPadQ?2,
signal \OutPad~QS8\ : std logic; InPadQ3 => InPadQ3,
signal \OutPad~QS9\ : std_logic; InPadQ4 => InPadQ4,
signal \OutPad~QS10\ : std_logic; InPadQ5 => InPadQ5,
signal \OutPad~QS11\: std_logic; InPadQ6 => InPadQo,
signal \OutPad~QS12\ : std_logic; InPadQ7 => InPadQ7,
signal \OutPad~QS13\: std_logic; InPadQ8 => InPadQ8,
signal \OutPad~QS14\ : std_logic; InPadQ9 => InPadQ9,
signal \OutPad~QS15\ : std_logic; InPadQ10 => InPadQ10,
--Signal is used to stop clock signal InPadQ11 => InPadQl11,
geerators InPadQ12 => InPadQ]12,
signal END_SIM: InPadQ13 => InPadQ13,
BOOLEAN:=FALSE; InPadQ14 => InPadQ14,
InPadQ15 => InPadQ15,
InPadQOV => InPadQOV,
\InPad~I0\ => \InPad~I0\,
begin \InPad~I1\ =>\InPad~I1\,
\InPad~I2\ => \InPad~I2\,

InPadI1 => InPadlIl,
InPadI2 => InPadI2,
InPadI3 => InPadI3,
InPadl4 => InPadl4,
InPadI5 => InPadlI5,
InPadl6 => InPadl6,
InPadl7 => InPadl7,
InPadI8 => InPadlI8,

-- Add your code here ...

-- Unit Under Test port map \InPad~I3\ => \InPad~I3\,
UUT : dtm_8rbps \InPad~I4\ => \InPad~I4\,
port map (\InPad~I5\ => \InPad~I5\,
CLK => CLK, \InPad~I6\ => \InPad~I6\,

DRFMO0 => DRFMO,
DRFM1 => DRFMI,
DRFM2 => DRFM2,
DRFM3 => DRFM3,
DRFM4 => DRFM4,

ENABLE => ENABLE,

Gain0 => Gain0,
Gainl => Gainl,
Gain2 => Gain2,
Gain3 => Gain3,
Inc0 => IncO,

Incl =>Incl,

Inc2 => Inc2,

Inc3 => Inc3,

Inc4 => Inc4,
InPadI0 => InPadIo,

137

\InPad~I7\ => \InPad~I7\,

\InPad~I8\ => \InPad~I8\,

\InPad~I9\ => \InPad~I9\,

\InPad~I10\ => \InPad~I10\,
\InPad~I11\ =>\InPad~I11\,
\InPad~I112\ => \InPad~I12\,
\InPad~I13\ => \InPad~I13\,
\InPad~114\ => \InPad~114\,
\InPad~I15\ => \InPad~I15\,
\InPad~QO0\ => \InPad~QO0\,
\InPad~Q1\ =>\InPad~Q1\,
\InPad~Q2\ => \InPad~Q2\,
\InPad~Q3\ => \InPad~Q3\,
\InPad~Q4\ => \InPad~Q4\,
\InPad~Q5\ => \InPad~Q5\,
\InPad~Q6\ => \InPad~Q6\,

\InPad~Q7\ =>\InPad~Q7\, \OutPad~IS10\ =>\OutPad~IS10\,

\InPad~Q8\ =>\InPad~Q8\, \OutPad~IS11\ =>\OutPad~IS11\,
\InPad~Q9\ => \InPad~Q9\, \OutPad~IS12\ =>\OutPad~IS12\,
\InPad~Q10\ => \InPad~Q10\, \OutPad~IS13\ =>\OutPad~IS13\,
\InPad~Q11\ =>\InPad~Q11\, \OutPad~IS14\ => \OutPad~IS14\,
\InPad~Q12\ => \InPad~Q12\, \OutPad~IS15\ =>\OutPad~IS15\,
\InPad~Q13\ => \InPad~Q13\, \OutPad~QS0\ => \OutPad~QS0\,
\InPad~Q14\ => \InPad~Q14\, \OutPad~QS1\ => \OutPad~QS1\,
\InPad~Q15\ =>\InPad~Q15\, \OutPad~QS2\ => \OutPad~QS2\,
ODVin => ODVin, \OutPad~QS3\ => \OutPad~QS3\,
ODVout => ODVout, \OutPad~QS4\ => \OutPad~QS4\,
Oper => Oper, \OutPad~QS5\ => \OutPad~QS5\,
OutPadIS0 => OutPadIS0, \OutPad~QS6\ => \OutPad~QS6\,
OutPadIS1 => OutPadIS1, \OutPad~QS7\ =>\OutPad~QS7\,
OutPadIS2 => OutPadIS2, \OutPad~QS8\ => \OutPad~QSS8\,
OutPadIS3 => OutPadIS3, \OutPad~QS9\ => \OutPad~QS9\,
OutPadIS4 => OutPadIS4, \OutPad~QS10\ => \OutPad~QS10\,
OutPadIS5 => OutPadISS5, \OutPad~QS11\ =>\OutPad~QS11\,
OutPadIS6 => OutPadIS6, \OutPad~QS12\ => \OutPad~QS12\,
OutPadIS7 => OutPadIS7, \OutPad~QS13\ =>\OutPad~QS13\,
OutPadIS8 => OutPadIS8, \OutPad~QS14\ =>\OutPad~QS14\,
OutPadIS9 => OutPadIS9, \OutPad~QS15\ =>\OutPad~QS15\,
OutPadIS10 => OutPadIS10, PSV =>PSV,
OutPadIS11 => OutPadIS11, RBinSelect0) => RBinSelect0,
OutPadIS12 => OutPadIS12, RBinSelect] => RBinSelectl,
OutPadIS13 => OutPadIS13, RBinSelect2 => RBinSelect2,
OutPadIS14 => OutPadIS14, UNP => UNP,
OutPadIS15 => OutPadIS15, URB => URB
OutPadISOV => OutPadISOV,);
OutPadQS0 => OutPadQS0, --Below VHDL code is an inserted
OutPadQS1 => OutPadQSI, Acompile\Waveform Editor 1.vhs
OutPadQS2 => OutPadQS2, --User can modify it
OutPadQS3 => OutPadQS3,
OutPadQS4 => OutPadQS4, STIMULUS: process
OutPadQS5 => OutPadQSS5, begin -- of stimulus process
OutPadQS6 => OutPadQS6, --wait for <time to next event>; --
OutPadQS7 => OutPadQS7, <current time>
OutPadQS8 => OutPadQSS8,
OutPadQS9 => OutPadQS9, InPadl10 <="0";
OutPadQS10 => OutPadQS10, InPadlll <='0";
OutPadQS11 => OutPadQS11, InPadl12 <="'0";
OutPadQS12 => OutPadQS12, InPadl13 <='0";
OutPadQS13 => OutPadQS13, InPadl14 <="'0";
OutPadQS14 => OutPadQS14, InPadl15 <="'0";
OutPadQS15 => OutPadQS15, InPadl7 <='0";
OutPadQSOV => OutPadQSOV, InPadI8 <="0";
\OutPad~IS0\ => \OutPad~IS0\, InPadl9 <="'0";
\OutPad~IS1\ => \OutPad~IS1\, InPadll <="'0";
\OutPad~IS2\ => \OutPad~IS2\, \InPad~I6\ <="1";
\OutPad~IS3\ => \OutPad~IS3\, \InPad~I7\ <="1";
\OutPad~IS4\ => \OutPad~IS4\, \InPad~I8\ <="1";
\OutPad~IS5\ => \OutPad~IS5\, \InPad~I9\ <="1";
\OutPad~IS6\ => \OutPad~IS6\, \InPad~I10\ <="1";
\OutPad~IS7\ =>\OutPad~IS7\, \InPad~I11\ <="1";
\OutPad~IS8\ => \OutPad~IS8\, InPadQOV <='0";
\OutPad~IS9\ => \OutPad~IS9\, \InPad~I13\ <="1";

138

\InPad~112\ <="1";
\InPad~Q15\<="1";
InPadl6 <="'0";
InPadI5 <="'0";
InPadl4 <="'0";
InPadI3 <='0";
InPadl2 <='0";
\InPad~114\ <="1";
\InPad~Q14\ <="1";
\InPad~Q13\ <="1";
\InPad~Q12\ <="1";
\InPad~Q11\ <="1";
\InPad~I0\ <="1'
\InPad~I1\ <="1"
\InPad~I2\ <="1";
\InPad~I3\ <="1"
\InPad~I14\ <="1"
\InPad~I5\ <="1";
\InPad~Q10\ <="1";
\InPad~Q9\ <="1";
\InPad~Q8\ <="1";
\InPad~Q7\ <="1";
\InPad~Q6\ <="1";
\InPad~Q5\ <="1";
\InPad~Q4\ <="1";
\InPad~Q3\ <="1";
\InPad~Q2\ <="1";
\InPad~Q1\ <="1";
\InPad~QO0\ <="1";
\InPad~I15\<="1";
InPadIOV <="'0";
InPadQ15 <='0";
InPadQ14 <='0";
InPadQ13 <='0";
InPadQ12 <='0";
InPadQ11 <="'0";
InPadQ10 <="0';
InPadQ9 <="'0";
InPadQ8 <="'0";
InPadQ7 <="'0";
InPadQ6 <="'0";
InPadQ5 <="'0";
InPadQ4 <="'0";
InPadQ3 <="'0";
InPadQ2 <="'0";
InPadQ1 <="'0";
InPadQ0 <="'0";
Gain2 <="1";
InPadl0 <="'0";
RBinSelect2 <="1";
RBinSelect] <="1";
RBinSelect0 <="'1";
PSV <='0";

Oper <="'1";
ODVin <="0";
URB <="1";

UNP <='0";
Inc4 <="1";
Inc3 <="1";
Inc2 <="1";
Incl <='0";
Inc0 <="0";
Gain3 <="1";
Gainl <='0";
Gain0 <="1";
DRFM4 <="U";
DRFM3 <="U";
DRFM2 <="U";
DRFM1 <="U";
DRFMO0 <="U";
ENABLE <="1";
wait for 2 ns; --0 fs
RBinSelect0 <="0";
Inc2 <="0";
Incl <="1";
wait for 2 ns; --2 ns
RBinSelect]l <="'0";
RBinSelect0 <="'1";
Inc3 <='0";
Inc2 <="1";
wait for 2 ns; --4 ns
RBinSelect0 <='0";
Inc2 <="0";
Incl <='0";
wait for 2 ns; --6 ns
RBinSelect2 <="'0";
RBinSelectl <="'1";
RBinSelect0 <="'1";
Gainl <="1";
Gain0 <="'0";
wait for 2 ns; --8 ns
RBinSelect0 <=
Inc4 <='0";
Inc3 <="1";
Inc2 <="1";
IncO <="1";
Gainl <='0";
Gain0 <="1";
wait for 2 ns; --10 ns
RBinSelect]l <="'0";
RBinSelect) <="1";
Inc4 <="1";
Inc3 <="0";
Inc2 <="0";
Inc0 <='0";
wait for 2 ns; --12 ns
RBinSelect0 <="'0";
Inc4 <="0";
Inc3 <="1";
Inc2 <="1";
Incl <="1";
IncO <="1";

0

wait for 2 ns; --14 ns
UNP <="1";
ENABLE <='0";

wait for 2 ns; --16 ns
PSV <='1";
UNP <='0";
DRFM4 <="0";
DRFM3 <="0";
DRFM2 <=0,
DRFM1 <="0';
DRFMO0 <=0

wait for 2 ns; --18 ns
DRFM4 <="1";
DRFM3 <="1";
DRFM2 <="1";
DRFMI <="1";
DRFMO <="1";

wait for 12 ns; --20 ns
DRFMO <="0";

wait for 6 ns; --32 ns
PSV <='0";

wait for 62 ns; --38 ns
END_SIM <= TRUE;

-- end of stimulus events
wait;
end process; -- end of stimulus process

CLOCK_CLK : process
begin

--this process was generated

based on formula: 0 0 ns, 1 1 ns -r 2 ns

140

--wait for <time to next
event>; -- <current time>
if END_SIM = FALSE then
CLK <="0";

wait for 1 ns; --0 fs

else
wait;
end if;
if END SIM = FALSE then
CLK <="1%;
wait for 1 ns; --1 ns
else
wait;
end if;

end process;
-- Add your stimulus here ...
end TB. ARCHITECTURE;

configuration
TESTBENCH_FOR_dtm_ S8rbps of
dtm_8rbps_tb is
for TB_ ARCHITECTURE
for UUT : dtm_8rbps
use entity
work.dtm_8rbps(structural);
end for;
end for;
end TESTBENCH_FOR_dtm_8rbps;

C. EXECUTING MACRO FOR THE 8 RANGE-BIN TEST BENCH

SetActiveLib -work

comp
“$DSN\src\dtm_8rbps.vhd”
comp

-include

-include

“$DSN\src\TestBench\dtm_8rbps TB.vhd”
asim TESTBENCH_FOR_dtm_8rbps

wave
wave -noreg CLK

wave -noreg DRFMO
wave -noreg DRFM1
wave -noreg DRFM?2
wave -noreg DRFM3
wave -noreg DRFM4
wave -noreg ENABLE

wave -noreg GainQ
wave -noreg Gainl
wave -noreg Gain2
wave -noreg Gain3
wave -noreg IncO
wave -noreg Incl
wave -noreg Inc2
wave -noreg Inc3
wave -noreg Inc4

wave -noreg InPadl0
wave -noreg InPadll
wave -noreg InPadl2
wave -noreg InPadl3
wave -noreg InPadl4
wave -noreg InPadlI5
wave -noreg InPadl6
wave -noreg InPadl7
wave -noreg InPadI8
wave -noreg InPadl9
wave -noreg InPadl10
wave -noreg InPadl11
wave -noreg InPadl12
wave -noreg InPadl13
wave -noreg InPadl14
wave -noreg InPadl15
wave -noreg InPadlOV
wave -noreg InPadQ0
wave -noreg InPadQ1
wave -noreg InPadQ2
wave -noreg InPadQ3
wave -noreg InPadQ4
wave -noreg InPadQ5
wave -noreg InPadQ6
wave -noreg InPadQ7
wave -noreg InPadQ8
wave -noreg InPadQ9
wave -noreg InPadQ10
wave -noreg InPadQ11
wave -noreg InPadQ12
wave -noreg InPadQ13

141

wave -noreg InPadQ14
wave -noreg InPadQ15
wave -noreg InPadQOV
wave -noreg {\InPad~I0\}
wave -noreg {\InPad~I1\}
wave -noreg {\InPad~I2\}
wave -noreg {\InPad~I3\}
wave -noreg {\InPad~I4\}
wave -noreg {\InPad~I5\}
wave -noreg {\InPad~I6\}
wave -noreg {\InPad~I7\}
wave -noreg {\InPad~I8\}
wave -noreg {\InPad~I9\}
wave -noreg {\InPad~I10\}
wave -noreg {\InPad~I11\}
wave -noreg {\InPad~I12\}
wave -noreg {\InPad~I13\}
wave -noreg {\InPad~I14\}
wave -noreg {\InPad~I15\}
wave -noreg {\InPad~Q0\}
wave -noreg {\InPad~Q1\}
wave -noreg {\InPad~Q2\}
wave -noreg {\InPad~Q3\}
wave -noreg {\InPad~Q4\}
wave -noreg {\InPad~Q5\}
wave -noreg {\InPad~Q6\}
wave -noreg {\InPad~Q7\}
wave -noreg {\InPad~Q8\}
wave -noreg {\InPad~Q9\}
wave -noreg {\InPad~Q10\}
wave -noreg {\InPad~Q11\}
wave -noreg {\InPad~Q12\}
wave -noreg {\InPad~Q13\}
wave -noreg {\InPad~Q14\}
wave -noreg {\InPad~Q15\}
wave -noreg ODVin

wave -noreg ODVout

wave -noreg Oper

wave -noreg OutPadISO
wave -noreg OutPadIS1
wave -noreg OutPadIS2
wave -noreg OutPadIS3
wave -noreg OutPadIS4
wave -noreg OutPadIS5
wave -noreg OutPadIS6
wave -noreg OutPadIS7
wave -noreg OutPadIS8
wave -noreg OutPadIS9
wave -noreg OutPadIS10
wave -noreg OutPadIS11
wave -noreg OutPadIS12
wave -noreg OutPadIS13
wave -noreg OutPadIS14
wave -noreg OutPadIS15

wave -noreg OutPadISOV
wave -noreg OutPadQS0
wave -noreg OutPadQS1
wave -noreg OutPadQS2
wave -noreg OutPadQS3
wave -noreg OutPadQS4
wave -noreg OutPadQS5
wave -noreg OutPadQS6
wave -noreg OutPadQS7
wave -noreg OutPadQS8
wave -noreg OutPadQS9
wave -noreg OutPadQS10
wave -noreg OutPadQS11
wave -noreg OutPadQS12
wave -noreg OutPadQS13
wave -noreg OutPadQS14
wave -noreg OutPadQS15
wave -noreg OutPadQSOV
wave -noreg {\OutPad~ISO\}
wave -noreg {\OutPad~IS1\}
wave -noreg {\OutPad~IS2\}
wave -noreg {\OutPad~IS3\}
wave -noreg {\OutPad~IS4\}
wave -noreg {\OutPad~IS5\}
wave -noreg {\OutPad~IS6\}
wave -noreg {\OutPad~IS7\}
wave -noreg {\OutPad~IS8\}
wave -noreg {\OutPad~IS9\}
wave -noreg {\OutPad~IS10\}
wave -noreg {\OutPad~IS11\}
wave -noreg {\OutPad~IS12\}
wave -noreg {\OutPad~IS13\}
wave -noreg {\OutPad~IS14\}

142

wave -noreg {\OutPad~IS15\}
wave -noreg {\OutPad~QS0\}
wave -noreg {\OutPad~QS1\}
wave -noreg {\OutPad~QS2\}
wave -noreg {\OutPad~QS3\}
wave -noreg {\OutPad~QS4\}
wave -noreg {\OutPad~QS5\}
wave -noreg {\OutPad~QS6\}
wave -noreg {\OutPad~QS7\}
wave -noreg {\OutPad~QS8\}
wave -noreg {\OutPad~QS9\}
wave -noreg {\OutPad~QS10\}
wave -noreg {\OutPad~QS11\}
wave -noreg {\OutPad~QS12\}
wave -noreg {\OutPad~QS13\}
wave -noreg {\OutPad~QS14\}
wave -noreg {\OutPad~QS15\}
wave -noreg PSV
wave -noreg RBinSelect0
wave -noreg RBinSelectl
wave -noreg RBinSelect2
wave -noreg UNP
wave -noreg URB
run 100.00 ns
The following lines can be used for
timing simulation

acom
<backannotated vhdl file name>
comp -include

“$DSN\src\TestBench\dtm_8rbps TB_tim_cfg.v
hd”
asim TIMING_FOR_dtm_8rbps

APPENDIX F. VHDL CODE FOR THE 32 RANGE-BIN

MODULATOR

TOP LEVEL VHDL CODE

-- Title

--Design :HB 32 RB 2
-- Author : Hakan Bergon
-- Company : NPS

-- File

c¢:\My Designs\HB 32 RB 2\compile\HB 32R

BPs.vhd

2002

-- Generated : Wed Aug 21 12:04:11

-- From :

c¢:\My Designs\HB 32 RB 2\src\HB 32RBPs.b

de

-- By : Bde2Vhdl ver. 2.01

-- Description :

-- Design unit header --
LIBRARY IEEE;

USE IEEE.std_logic 1164.all;

entity HB_32RBPs is
port(

CLK : in std_logic;
DRFMO : in std_logic;
DRFMLI : in std_logic;
DRFM?2 : in std_logic;
DRFM3 : in std logic;
DRFM4 : in std logic;
ENABLE 1 :instd logic;
ENABLE 2 :instd logic;
ENABLE 3 :instd logic;
ENABLE 4 :instd logic;
GainO : in std_logic;
Gainl : in std_logic;
Gain2 : in std_logic;
Gain3 : in std_logic;
InPadlIO : in std_logic;
InPadIl : in std_logic;
InPadl10 : in std_logic;
InPadlIl1 : in std_logic;
InPadI12 : in std_logic;
InPadI13 : in std_logic;
InPadl14 : in std_logic;
InPadI15 : in std_logic;
InPadlI2 : in std_logic;
InPadI3 : in std_logic;

143

InPadl4 : in std_logic;

InPadI5 : in std_logic;

InPadl6 : in std_logic;

InPadI7 : in std_logic;

InPadI8 : in std_logic;

InPadlI9 : in std_logic;
InPadIOV : in std_logic;
InPadQO : in std_logic;
InPadQ1 : in std_logic;
InPadQ10 : in std_logic;
InPadQ11 : in std_logic;
InPadQ12 : in std_logic;
InPadQ13 : in std_logic;
InPadQ14 : in std_logic;
InPadQ15 : in std_logic;
InPadQ?2 : in std_logic;
InPadQ3 : in std_logic;
InPadQ4 : in std_logic;
InPadQS5 : in std_logic;
InPadQ6 : in std_logic;
InPadQ7 : in std_logic;
InPadQ8 : in std_logic;
InPadQ9 : in std_logic;
InPadQOV : in std_logic;

IncO : in std_logic;

Incl : in std_logic;

Inc2 : in std_logic;

Inc3 : in std_logic;

Inc4 : in std_logic;

ODVin : in std_logic;

Oper : in std_logic;

PSV :instd logic;

RB_81 inSelect0 : in std_logic;
RB_81 inSelectl : in std_logic;
RB_81 inSelect2 : in std_logic;
RB 82 inSelect0 : in std_logic;
RB 82 inSelectl : in std_logic;
RB 82 inSelect2 : in std_logic;
RB 83 inSelect0 : in std_logic;
RB 83 inSelectl : in std logic;
RB 83 inSelect2 : in std logic;
RB_84 inSelect0 : in std_logic;
RB_84 inSelect] : in std_logic;
RB_84 inSelect2 : in std_logic;
UNP : in std_logic;

URB : in std_logic;

\InPad~I0\ : in std_logic;
\InPad~I10\ : in std_logic;
\InPad~I11\: in std_logic;

\InPad~I12\
\InPad~I13\
\InPad~I14\
\InPad~I15\
\InPad~I1\ :
\InPad~I2\ :
\InPad~I3\ :
\InPad~I4\ :
\InPad~I5\ :
\InPad~I6\ :
\InPad~I7\ :
\InPad~I8\ :
\InPad~I9\ :
\InPad~QO\

\InPad~Q10\ :
\InPad~Q11\ :
\InPad~Q12\ :
\InPad~Q13\ :
\InPad~Q14\ :
\InPad~Q15\ :

\InPad~Q1\ :
\InPad~Q2\ :
\InPad~Q3\ :
\InPad~Q4\ :
\InPad~Q5\ :
\InPad~Q6\ :
\InPad~Q7\ :
\InPad~Q8\ :
\InPad~Q9\ :

:1in std_logic;
:in std_logic;
:in std_logic;
:in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;

:in std_logic;

in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;

ODVout : out std_logic;
OutPadISO : out std_logic;
OutPadIS1 : out std_logic;

OutPadIS10
OutPadIS11
OutPadIS12
OutPadIS13
OutPadIS14
OutPadIS15
OutPadIS2
OutPadIS3
OutPadIS4
OutPadIS5
OutPadIS6
OutPadIS7
OutPadIS8
OutPadIS9

: out std_logic;
: out std_logic;
: out std_logic;
: out std_logic;
: out std_logic;
: out std_logic;

: out std_logic;
: out std_logic;
: out std_logic;
: out std_logic;
: out std_logic;
: out std_logic;
: out std_logic;
: out std_logic;

OutPadISOV : out std_logic;
OutPadQSo0 : out std_logic;
OutPadQS1 : out std_logic;

OutPadQS10 :
: out std_logic;
OutPadQS12 :
OutPadQS13 :
OutPadQS14 :
OutPadQS15 :

OutPadQS11

out std_logic;

out std_logic;
out std_logic;
out std_logic;
out std_logic;

OutPadQS2 : out std_logic;

144

OutPadQS3
OutPadQS4
OutPadQS5
OutPadQS6
OutPadQS7
OutPadQS8
OutPadQS9

: out std_logic;
: out std_logic;
: out std_logic;
: out std_logic;
: out std_logic;
: out std_logic;
: out std_logic;

OutPadQSOV : out std_logic;
\OutPad~ISO\ : out std_logic;

\OutPad~IS10\ :
\OutPad~IS11\ :
\OutPad~IS12\ :
\OutPad~IS13\ :
\OutPad~IS14\ :

out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;

\OutPad~IS15\ : out std_logic;

\OutPad~IS1\ :
\OutPad~IS2\ :
\OutPad~IS3\ :
\OutPad~IS4\ :
\OutPad~IS5\ :
\OutPad~IS6\ :
\OutPad~IS7\ :
\OutPad~IS8\ :
\OutPad~IS9\ :

out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;

\OutPad~QSO0\ : out std_logic;

\OutPad~QS10\ :
\OutPad~QS11\:
\OutPad~QS12\ :
\OutPad~QS13\:
\OutPad~QS14\ :
\OutPad~QS15\ :

\OutPad~QSI\ :
\OutPad~QS2\ :
\OutPad~QS3\ :
\OutPad~QS4\ :
\OutPad~QS5\ :
\OutPad~QS6\ :
\OutPad~QS7\ :
\OutPad~QS8\ :
\OutPad~QS9\ :
);
end HB_32RBPs;

architecture structural of HB_32RBPs is

out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic

---- Component declarations -----

component DTM_8RBPs
port (

CLK :in STD_LOGIC;
DRFMO : in STD LOGIC;
DRFMI :in STD LOGIC;
DRFM2 : in STD LOGIC;
DRFM3 : in STD LOGIC;
DRFM4 : in STD LOGIC;
ENABLE : in STD LOGIC;

Gain0 : in STD_LOGIC;
Gainl : in STD_LOGIC;
Gain2 : in STD_LOGIC;
Gain3 : in STD_LOGIC;
InPadIO : in STD _LOGIC;
InPadIl : in STD _LOGIC;
InPadl10 : in STD_LOGIC;
InPadIll : in STD_LOGIC;
InPadl12 : in STD LOGIC;
InPadl13 : in STD LOGIC;
InPadl14 : in STD LOGIC;
InPadl15 : in STD_LOGIC;

\InPad~I114\: in STD_LOGIC;
\InPad~I15\: in STD_LOGIC;
\InPad~I1\: in STD LOGIC;
\InPad~I2\ : in STD LOGIC;
\InPad~I3\: in STD LOGIC;
\InPad~I4\ : in STD LOGIC;
\InPad~I5\: in STD LOGIC;
\InPad~I6\ : in STD LOGIC;
\InPad~I7\: in STD_LOGIC;
\InPad~I8\ : in STD_LOGIC;
\InPad~I9\ : in STD_LOGIC;
\InPad~QO0\ : in STD LOGIC;

InPadI2 : in STD_LOGIC; \InPad~Q10\ : in STD_LOGIC;
InPadI3 : in STD _LOGIC; \InPad~Q11\: in STD_LOGIC;
InPadl4 : in STD LOGIC; \InPad~Q12\ : in STD_LOGIC;
InPadlI5 : in STD LOGIC; \InPad~Q13\ : in STD_LOGIC;
InPadl6 : in STD LOGIC; \InPad~Q14\ : in STD LOGIC;
InPadI7 : in STD_LOGIC; \InPad~Q15\ : in STD_LOGIC;
InPadI8 : in STD_LOGIC; \InPad~Q1\ : in STD_LOGIC;
InPadl9 : in STD _LOGIC; \InPad~Q2\ : in STD LOGIC,;
InPadIOV : in STD LOGIC,; \InPad~Q3\ : in STD LOGIC,;
InPadQoO : in STD LOGIC; \InPad~Q4\ : in STD LOGIC,;
InPadQ1 : in STD_LOGIC; \InPad~Q5\ : in STD_LOGIC;
InPadQ10 : in STD_LOGIC; \InPad~Q6\ : in STD_LOGIC;
InPadQ11 : in STD_LOGIC; \InPad~Q7\ : in STD_LOGIC;
InPadQ12 : in STD_LOGIC; \InPad~Q8\ : in STD_LOGIC;
InPadQ13 : in STD_LOGIC; \InPad~Q9\ : in STD_LOGIC;

InPadQ14 : in STD_LOGIC;

ODVout : out STD_LOGIC;

InPadQ15 : in STD_LOGIC; OutPadISO : out STD_LOGIC;
InPadQ2 : in STD_LOGIC; OutPadIS1 : out STD_LOGIC;
InPadQ3 : in STD_LOGIC; OutPadIS10 : out STD LOGIC;
InPadQ4 : in STD_LOGIC; OutPadIS11 : out STD LOGIC;
InPadQ5 : in STD_LOGIC; OutPadIS12 : out STD LOGIC;
InPadQ6 : in STD_LOGIC; OutPadIS13 : out STD _LOGIC;
InPadQ7 : in STD_LOGIC,; OutPadIS14 : out STD _LOGIC;
InPadQ8 : in STD_LOGIC; OutPadIS15 : out STD _LOGIC;
InPadQ9 : in STD_LOGIC; OutPadIS2 : out STD_LOGIC;

InPadQOV : in STD_LOGIC;
IncO : in STD_LOGIC;

Incl : in STD _LOGIC;

Inc2 : in STD _LOGIC;

Inc3 :in STD_LOGIC;

Inc4 : in STD_LOGIC;

ODVin : in STD LOGIC;
Oper : in STD LOGIC;

PSV :in STD _LOGIC;
RBinSelect0 : in STD_LOGIC;
RBinSelectl : in STD_LOGIC;
RBinSelect2 : in STD_LOGIC;
UNP : in STD_LOGIC;

URB :in STD LOGIC;
\InPad~I0\ : in STD LOGIC;
\InPad~I10\ : in STD_LOGIC;
\InPad~I11\: in STD_LOGIC;
\InPad~I12\: in STD_LOGIC;
\InPad~I13\: in STD_LOGIC;

OutPadIS3 : out STD_LOGIC;
OutPadIS4 : out STD _LOGIC;
OutPadIS5 : out STD _LOGIC;
OutPadIS6 : out STD _LOGIC;
OutPadIS7 : out STD _LOGIC;
OutPadIS8 : out STD_LOGIC;
OutPadIS9 : out STD_LOGIC;
OutPadISOV : out STD_LOGIC;
OutPadQSo0 : out STD_LOGIC;
OutPadQS1 : out STD_LOGIC;
OutPadQS10 : out STD_LOGIC;
OutPadQS11 : out STD LOGIC;
OutPadQS12 : out STD LOGIC;
OutPadQS13 : out STD LOGIC;
OutPadQS14 : out STD _LOGIC;
OutPadQS15 : out STD _LOGIC;
OutPadQS2 : out STD_LOGIC;
OutPadQS3 : out STD_LOGIC;
OutPadQS4 : out STD _LOGIC;

145

);

OutPadQS5 :
OutPadQS6 :
OutPadQS7 :
OutPadQS8 :
OutPadQS9 :

out STD_LOGIC;
out STD_LOGIC;
out STD_LOGIC;
out STD_LOGIC;
out STD_LOGIC;

OutPadQSOV : out STD_LOGIC;

\OutPad~ISO\

:out STD_LOGIC;

\OutPad~IS10\ : out STD_LOGIC;
\OutPad~IS11\ : out STD LOGIC;
\OutPad~IS12\ : out STD LOGIC;
\OutPad~IS13\ : out STD LOGIC;
\OutPad~IS14\ : out STD LOGIC;
\OutPad~IS15\ : out STD_ LOGIC;

\OutPad~IS1\ :
\OutPad~IS2\ :
\OutPad~IS3\ :
\OutPad~IS4\ :
\OutPad~IS5\ :
\OutPad~IS6\ :
\OutPad~IS7\ :
\OutPad~IS8\ :
\OutPad~IS9\ :

out STD_LOGIC;
out STD_LOGIC;
out STD_LOGIC;
out STD_LOGIC;
out STD_LOGIC;
out STD_LOGIC;
out STD _LOGIC,;
out STD LOGIC,;
out STD LOGIC,;

\OutPad~QS0\ : out STD LOGIC;

0\: out STD_LOGIC;
1\: out STD_LOGIC;
2\:out STD_LOGIC;
3\:out STD_LOGIC;
4\ : out STD_LOGIC;
5\ :out STD LOGIC;

\OutPad~QS1
\OutPad~QS1
\OutPad~QS1
\OutPad~QS1
\OutPad~QS1
\OutPad~QS1
\OutPad~QS1

\:out STD_LOGIC;

\OutPad~QS2\ : out STD_LOGIC;

\OutPad~QS3

\:out STD LOGIC;

\OutPad~QS4\ : out STD LOGIC;
\OutPad~QS5\ : out STD _LOGIC;
\OutPad~QS6\ : out STD LOGIC;
\OutPad~QS7\ : out STD LOGIC;
\OutPad~QS8\ : out STD_LOGIC;
\OutPad~QS9\ : out STD_LOGIC

end component;

---- Signal declarations used on the

diagram ----

signal P8101

signal P8102 :
signal P8103 :
signal P8104 :
signal P8105 :
signal P8106 :
signal P8107 :
signal P8108 :
signal P8109 :
signal P8110 :
: STD_LOGIC;
signal P8112 :

signal P8111

: STD_LOGIC;

STD_LOGIC;
STD_LOGIC;
STD LOGIC;
STD LOGIC;
STD LOGIC;
STD LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;

STD_LOGIC;

146

signal P8113 :
signal P8114 :
signal P8115 :
signal P8116 :
signal P8117 :
signal P8118 :
signal P8119 :
signal P8120 :
: STD_LOGIC;
signal P8122 :
signal P8123 :
signal P8124 :
signal P8125 :
signal P8126 :
signal P8127 :
signal P8128 :
signal P8129 :
signal P8130 :
: STD LOGIC;
signal P8132 :
signal P8133 :
signal P8134 :
signal P8135 :
signal P8136 :
signal P8137 :
signal P8138 :
signal P8139 :
signal P8140 :
: STD _LOGIC;
signal P8142 :
signal P8143 :
signal P8144 :
signal P8145 :
signal P8146 :
signal P8147 :
signal P8148 :
signal P8149 :
signal P8150 :
: STD _LOGIC;

signal P8121

signal P8131

signal P8141

signal P8151

signal P8152 :
signal P8153 :
signal P8154 :
signal P8155 :
signal P8156 :
signal P8157 :
signal P8158 :
signal P8159 :
signal P8160 :
: STD LOGIC;
signal P8162 :
signal P8163 :
signal P8164 :
signal P8165 :
signal P8166 :
: STD_LOGIC;
signal P8202 :

signal P8161

signal P8201

STD_LOGIC;
STD_LOGIC;
STD LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD LOGIC;
STD LOGIC;

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD LOGIC;
STD LOGIC;

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD LOGIC;

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD LOGIC;
STD LOGIC;

STD LOGIC;
STD LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;

STD_LOGIC;

signal P8203 :
signal P8204 :
signal P8205 :
signal P8206 :
signal P8207 :
signal P8208 :
signal P8209 :
signal P8210 :
: STD_LOGIC;
signal P8212 :
signal P8213 :
signal P8214 :
signal P8215 :
signal P8216 :
signal P8217 :
signal P8218 :
signal P8219 :
signal P8220 :
: STD LOGIC;
signal P8222 :
signal P8223 :
signal P8224 :
signal P8225 :
signal P8226 :
signal P8227 :
signal P8228 :
signal P8229 :
signal P8230 :
: STD LOGIC;
signal P8232 :
signal P8233 :
signal P8234 :
signal P8235 :
signal P8236 :
signal P8237 :
signal P8238 :
signal P8239 :
signal P8240 :
: STD_LOGIC;
signal P8242 :
signal P8243 :
signal P8244 :
signal P8245 :
signal P8246 :
signal P8247 :
signal P8248 :
signal P8249 :
signal P8250 :
: STD LOGIC;
signal P8252 :
signal P8253 :
signal P8254 :
signal P8255 :
signal P8256 :
signal P8257 :
signal P8258 :

signal P8211

signal P8221

signal P8231

signal P8241

signal P8251

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD LOGIC;
STD_LOGIC;
STD LOGIC;
STD LOGIC;
STD LOGIC;

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD LOGIC;
STD LOGIC;

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD LOGIC;
STD LOGIC;
STD LOGIC;
STD LOGIC;
STD LOGIC;

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD LOGIC;

STD LOGIC;
STD LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;

147

signal P8259 :
signal P8260 :
: STD_LOGIC;
signal P8262 :
signal P8263 :
signal P8264 :
signal P8265 :
signal P8266 :
: STD_LOGIC;
signal P8302 :
signal P8303 :
signal P8304 :
signal P8305 :
signal P8306 :
signal P8307 :
signal P8308 :
signal P8309 :
signal P8310 :
: STD LOGIC;
signal P8312 :
signal P8313 :
signal P8314 :
signal P8315 :
signal P8316 :
signal P8317 :
signal P8318 :
signal P8319 :
signal P8320 :
: STD _LOGIC;
signal P8322 :
signal P8323 :
signal P8324 :
signal P8325 :
signal P8326 :
signal P8327 :
signal P8328 :
signal P8329 :
signal P8330 :
: STD _LOGIC;
signal P8332 :
signal P8333 :
signal P8334 :
signal P8335 :
signal P8336 :
signal P8337 :
signal P8338 :
signal P8339 :
signal P8340 :
: STD LOGIC;
signal P8342 :
signal P8343 :
signal P8344 :
signal P8345 :
signal P8346 :
signal P8347 :
signal P8348 :

signal P8261

signal P8301

signal P8311

signal P8321

signal P8331

signal P8341

STD_LOGIC;
STD_LOGIC;

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD LOGIC;
STD LOGIC;

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD LOGIC;

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD LOGIC;
STD LOGIC;

STD LOGIC;
STD LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;

signal P8349 :
signal P8350 :
: STD_LOGIC;
signal P8352 :
signal P8353 :
signal P8354 :
signal P8355 :
signal P8356 :
signal P8357 :
signal P8358 :
signal P8359 :
signal P8360 :
: STD_LOGIC;
signal P8362 :
signal P8363 :
signal P8364 :
signal P8365 :
signal P8366 :

signal P8351

signal P8361

begin

---- Component instantiations ----

\HB RangeBinModulator 32 1\
DTM_8RBPs

port map(

STD_LOGIC;
STD_LOGIC;

STD LOGIC;
STD LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;

CLK => CLK,

DRFMO0 => DRFMO,
DRFMI1 => DRFMI,
DRFM2 => DRFM2,
DRFM3 => DRFM3,
DRFM4 => DRFM4,

ENABLE => ENABLE 1,

Gain0 => Gain0,
Gainl => Gainl,
Gain2 => Gain2,
Gain3 => Gain3,
InPadl0 => InPadlIO,
InPadll => InPadlIl,
InPadl10 => InPadl10,
InPadll1 => InPadll1,
InPadl12 => InPadl12,
InPadl13 => InPadl13,
InPadl14 => InPadl14,
InPadl15 => InPadll5,
InPadI2 => InPadl2,
InPadI3 => InPadI3,
InPadl4 => InPadl4,
InPadI5 => InPadlI5,
InPadl6 => InPadl6,
InPadl7 => InPadl7,
InPadI8 => InPadls,
InPadl9 => InPadl9,

InPadlOV => InPadIOV,

InPadQ0 => InPadQo,
InPadQ1 => InPadQl,

148

InPadQ10 => InPadQ10,
InPadQ11 => InPadQl11,
InPadQ12 => InPadQ12,
InPadQ13 => InPadQ13,
InPadQ14 => InPadQ14,
InPadQ15 => InPadQ15,
InPadQ2 => InPadQ?2,
InPadQ3 => InPadQ3,
InPadQ4 => InPadQ4,
InPadQ5 => InPadQ5,
InPadQ6 => InPadQo6,
InPadQ7 => InPadQ7,
InPadQ8 => InPadQ8,
InPadQ9 => InPadQ9,
InPadQOV => InPadQOV,
Inc0 => IncO,

Incl => Incl,

Inc2 => Inc2,

Inc3 => Inc3,

Inc4 => Inc4,

ODVin => ODVin,
ODVout => ODVout,
Oper => Oper,
OutPadISO => P8101,
OutPadIS1 => P8102,
OutPadIS10 => P8111,
OutPadIS11 => P8112,
OutPadIS12 => P8113,
OutPadIS13 => P8114,
OutPadIS14 => P8115,
OutPadIS15 => P8116,
OutPadIS2 => P8103,
OutPadIS3 => P8104,
OutPadIS4 => P8105,
OutPadIS5 => P8106,
OutPadIS6 => P8107,
OutPadIS7 => P8108,
OutPadIS8 => P8109,
OutPadIS9 => P8110,
OutPadISOV => P8117,
OutPadQS0 => P8118,
OutPadQS1 =>P8119,
OutPadQS10 => P8127,
OutPadQS11 => P8128,
OutPadQS12 => P8129,
OutPadQS13 => P8130,
OutPadQS14 => P8131,
OutPadQS15 => P8132,
OutPadQS2 => P8120,
OutPadQS3 => P8121,
OutPadQS4 => P8122,
OutPadQS5 => P8166,
OutPadQS6 => P8123,
OutPadQS7 => P8124,
OutPadQS8 => P8125,
OutPadQS9 => P8126,

OutPadQSOV => P8133, \OutPad~QS10\ => P8160,

PSV =>PSV, \OutPad~QS11\ => P8161,
RBinSelect0 => RB_81 inSelect0, \OutPad~QS12\ => P8162,
RBinSelect] => RB_81 inSelectl, \OutPad~QS13\ => P8163,
RBinSelect2 => RB_81 inSelect2, \OutPad~QS14\ => P8164,
UNP => UNP, \OutPad~QS15\ => P8165,
URB => URB, \OutPad~QS1\ => P8151,
\InPad~I0\ => \InPad~I0\, \OutPad~QS2\ => P8152,
\InPad~I110\ => \InPad~I10\, \OutPad~QS3\ => P8153,
\InPad~I11\ =>\InPad~I11\, \OutPad~QS4\ => P8154,
\InPad~I12\ => \InPad~I12\, \OutPad~QS5\ => P8155,
\InPad~I13\ =>\InPad~I13\, \OutPad~QS6\ => P8156,
\InPad~114\ =>\InPad~114\, \OutPad~QS7\ => P8157,
\InPad~I15\ => \InPad~I15\, \OutPad~QS8\ => P8158,
\InPad~I1\ =>\InPad~I1\, \OutPad~QS9\ => P8159
\InPad~I2\ => \InPad~I2\,);

\InPad~I3\ => \InPad~I3\,

\InPad~I4\ => \InPad~I14\, \HB_ RangeBinModulator 32 2\
\InPad~I5\ => \InPad~I5\, DTM_8RBPs

\InPad~I6\ => \InPad~I6\, port map(

\InPad~I7\ => \InPad~I7\, CLK => CLK,

\InPad~I8\ => \InPad~I8\, DRFMO0 => DRFMO,
\InPad~I9\ => \InPad~I9\, DRFM1 => DRFMI,
\InPad~QO\ => \InPad~QO0\, DRFM2 => DRFM2,
\InPad~Q10\ => \InPad~Q10\, DRFM3 => DRFM3,
\InPad~Q11\ =>\InPad~Q11\, DRFM4 => DRFM4,
\InPad~Q12\ => \InPad~Q12\, ENABLE => ENABLE 2,
\InPad~Q13\ =>\InPad~Q13\, Gain0 => Gain0,
\InPad~Q14\ =>\InPad~Q14\, Gainl => Gainl,
\InPad~Q15\ =>\InPad~Q15\, Gain2 => Gain2,
\InPad~Q1\ =>\InPad~Q1\, Gain3 => Gain3,
\InPad~Q2\ =>\InPad~Q2\, InPadI0 => P8101,
\InPad~Q3\ => \InPad~Q3\, InPadIl => P8102,
\InPad~Q4\ => \InPad~Q4\, InPadI10 =>P8111,
\InPad~Q5\ => \InPad~Q5\, InPadIl1 =>P8112,
\InPad~Q6\ => \InPad~Q6\, InPadI12 => P8113,
\InPad~Q7\ => \InPad~Q7\, InPadI13 => P8114,
\InPad~Q8\ => \InPad~Q8\, InPadl14 => P8115,
\InPad~Q9\ => \InPad~Q9\, InPadIl5 => P8116,
\OutPad~ISO\ => P8134, InPadl2 => P8103,
\OutPad~IS10\ => P8144, InPadI3 => P8104,
\OutPad~IS11\ => P8145, InPadl4 => P8105,
\OutPad~IS12\ => P8146, InPadI5 => P8106,
\OutPad~IS13\ => P8147, InPadl6 => P8107,
\OutPad~IS14\ => P8148, InPadl7 => P8108,
\OutPad~IS15\ => P8149, InPadI8 => P8109,
\OutPad~IS1\ => P8135, InPadI9 => P8110,
\OutPad~IS2\ => P8136, InPadIOV =>P8117,
\OutPad~IS3\ => P8137, InPadQ0 => P8118,
\OutPad~IS4\ => P8138, InPadQ1 => P8119,
\OutPad~IS5\ => P8139, InPadQ10 => P8127,
\OutPad~IS6\ => P8140, InPadQ11 => P8128,
\OutPad~IS7\ => P8141, InPadQ12 => P8129,
\OutPad~IS8\ => P8142, InPadQ13 => P8130,
\OutPad~ISO\ => P8143, InPadQ14 => P8131,
\OutPad~QS0\ => P8150, InPadQ15 => P8132,

149

InPadQ2 => P8120, URB =>URB,

InPadQ3 => P8121, \InPad~I0\ => P8134,
InPadQ4 => P8122, \InPad~I110\ => P8144,
InPadQ5 => P8166, \InPad~I11\ => P8145,
InPadQ6 => P8123, \InPad~112\ => P8146,
InPadQ7 => P8124, \InPad~113\ => P8147,
InPadQ8 => P8125, \InPad~114\ => P8148,
InPadQ9 => P8126, \InPad~I15\ => P8149,
InPadQOV => P8133, \InPad~I1\=> P8135,

IncO => IncO0, \InPad~I2\ => P8136,

Incl => Incl, \InPad~I3\=> P8137,

Inc2 => Inc2, \InPad~I4\ => P8138,

Inc3 => Inc3, \InPad~I5\=> P8139,

Inc4 => Inc4, \InPad~I6\ => P8140,
ODVin => ODVin, \InPad~I7\=> P8141,
ODVout => ODVout, \InPad~I8\ => P8142,
Oper => Oper, \InPad~I9\ => P8143,
OutPadIS0 => P8201, \InPad~QO0\ => P8150,
OutPadIS1 => P8202, \InPad~Q10\ => P8160,
OutPadIS10 => P8211, \InPad~Q11\=>P8161,
OutPadIS11 => P8212, \InPad~Q12\ => P8162,
OutPadIS12 => P8213, \InPad~Q13\ => P8163,
OutPadIS13 => P8214, \InPad~Q14\ => P8164,
OutPadIS14 => P8215, \InPad~Q15\ => P8165,
OutPadIS15 => P8216, \InPad~Q1\ =>P8151,
OutPadIS2 => P8203, \InPad~Q2\ => P8152,
OutPadIS3 => P8204, \InPad~Q3\ => P8153,
OutPadIS4 => P8205, \InPad~Q4\ => P8154,
OutPadIS5 => P8206, \InPad~Q5\ => P8155,
OutPadIS6 => P8207, \InPad~Q6\ => P8156,
OutPadIS7 => P8208, \InPad~Q7\ => P8157,
OutPadIS8 => P8209, \InPad~Q8\ => P8158,
OutPadIS9 => P§210, \InPad~Q9\ => P8159,
OutPadISOV => P8217, \OutPad~ISO0\ => P8234,
OutPadQS0 => P8218, \OutPad~IS10\ => P8244,
OutPadQS1 => P8219, \OutPad~IS11\=> P8245,
OutPadQS10 => P8227, \OutPad~IS12\ => P8246,
OutPadQS11 => P8228, \OutPad~IS13\ => P8247,
OutPadQS12 => P8229, \OutPad~IS14\ => P8248,
OutPadQS13 => P8230, \OutPad~IS15\ => P8249,
OutPadQS14 => P8231, \OutPad~IS1\ => P8235,
OutPadQS15 => P8232, \OutPad~IS2\ => P8236,
OutPadQS2 => P8§220, \OutPad~IS3\ => P8237,
OutPadQS3 => P8221, \OutPad~IS4\ => P8238,
OutPadQS4 => P8222, \OutPad~IS5\ => P8239,
OutPadQS5 => P8266, \OutPad~IS6\ => P8240,
OutPadQS6 => P8223, \OutPad~IS7\ => P8241,
OutPadQS7 => P8224, \OutPad~IS8\ => P8242,
OutPadQS8 => P8225, \OutPad~IS9\ => P8243,
OutPadQS9 => P8226, \OutPad~QS0\ => P8250,
OutPadQSOV => P8233, \OutPad~QS10\ => P8260,
PSV =>PSV, \OutPad~QS11\ => P8261,
RBinSelect0 => RB_82 inSelect0, \OutPad~QS12\ => P8262,
RBinSelect] => RB_82 inSelectl, \OutPad~QS13\ => P8263,
RBinSelect2 => RB_82 inSelect2, \OutPad~QS14\ => P8264,
UNP => UNP, \OutPad~QS15\ => P8265,

150

\OutPad~QS1\ => P8251, InPadQ8 => P8225,

\OutPad~QS2\ => P8252, InPadQ9 => P8226,
\OutPad~QS3\ => P§253, InPadQOV => P8233,
\OutPad~QS4\ => P8254, IncO => IncO0,
\OutPad~QS5\ => P§255, Incl =>Incl,
\OutPad~QS6\ => P8256, Inc2 => Inc2,
\OutPad~QS7\ => P8257, Inc3 => Inc3,
\OutPad~QS8\ => P8258, Inc4 => Inc4,
\OutPad~QS9\ => P8259 ODVin => ODVin,
); ODVout => ODVout,
Oper => Oper,
\HB RangeBinModulator 32 3\ : OutPadIS0 => P8301,
DTM_8RBPs OutPadIS1 => P8302,
port map(OutPadIS10 => P8311,
CLK => CLK, OutPadIS11 => P8312,
DRFMO0 => DRFMO, OutPadIS12 => P8313,
DRFM1 => DRFM]1, OutPadIS13 => P8314,
DRFM2 => DRFM2, OutPadIS14 => P8315,
DRFM3 => DRFM3, OutPadIS15 => P8316,
DRFM4 => DRFM4, OutPadIS2 => P8303,
ENABLE => ENABLE 3, OutPadIS3 => P8304,
Gain0 => Gain0, OutPadIS4 => P8305,
Gainl => Gainl, OutPadIS5 => P8306,
Gain2 => Gain2, OutPadIS6 => P8307,
Gain3 => Gain3, OutPadIS7 => P8308,
InPadI0 => P8201, OutPadIS8 => P8309,
InPadIl => P8202, OutPadIS9 => P8310,
InPadl10 => P8211, OutPadISOV => P8317,
InPadIll => P8212, OutPadQS0 => P8318,
InPadI12 => P8213, OutPadQS1 =>P8319,
InPadI13 => P8§214, OutPadQS10 => P8327,
InPadl14 => P8215, OutPadQS11 => P8328,
InPadI15 => P8216, OutPadQS12 => P8329,
InPadI2 => P8203, OutPadQS13 => P8330,
InPadI3 => P8204, OutPadQS14 => P8331,
InPadl4 => P8205, OutPadQS15 => P8332,
InPadI5 => P8206, OutPadQS2 => P8320,
InPadl6 => P8207, OutPadQS3 => P8321,
InPadl7 => P8208, OutPadQS4 => P8322,
InPadI8 => P8209, OutPadQS5 => P8366,
InPadl9 => P8210, OutPadQS6 => P8323,
InPadlOV => P8217, OutPadQS7 => P8324,
InPadQ0 => P8218, OutPadQS8 => P8325,
InPadQ1 => P8219, OutPadQS9 => P8§326,
InPadQ10 => P8227, OutPadQSOV => P8333,
InPadQ11 => P8228, PSV =>PSV,
InPadQ12 => P8229, RBinSelect0 => RB_83 inSelect0,
InPadQ13 => P8230, RBinSelect] =>RB_83 inSelectl,
InPadQ14 => P8231, RBinSelect2 =>RB_83 inSelect2,
InPadQ15 => P8232, UNP => UNP,
InPadQ2 => P8220, URB => URB,
InPadQ3 => P8221, \InPad~I0\ => P8234,
InPadQ4 => P8222, \InPad~I10\ => P8244,
InPadQ5 => P8266, \InPad~I11\ => P8245,
InPadQ6 => P8223, \InPad~I12\ => P8246,
InPadQ7 => P8224, \InPad~I13\ => P8247,

151

\InPad~114\ => P8248, \OutPad~QS7\ => P8357,

\InPad~I15\=> P8249, \OutPad~QS8\ => P8358,
\InPad~I1\ => P8235, \OutPad~QS9\ => P8359
\InPad~I2\ => P8236,);

\InPad~I3\ => P8237,

\InPad~I4\ => P8238, \HB_RangeBinModulator 32 4\
\InPad~I5\ => P8239, DTM_8RBPs

\InPad~I6\ => P8240, port map(

\InPad~I7\ => P8241, CLK => CLK,
\InPad~I8\ => P8242, DRFMO0 => DRFMO,
\InPad~I9\ => P8243, DRFM1 => DRFM]1,
\InPad~QO0\ => P8250, DRFM2 => DRFM2,
\InPad~Q10\ => P8260, DRFM3 => DRFM3,
\InPad~Q11\=> P8261, DRFM4 => DRFM4,
\InPad~Q12\ => P8262, ENABLE => ENABLE 4,
\InPad~Q13\ => P8263, Gain0 => Gain0,
\InPad~Q14\ => P8264, Gainl => Gainl,
\InPad~Q15\ => P8265, Gain2 => Gain2,
\InPad~Q1\ => P8251, Gain3 => Gain3,
\InPad~Q2\ => P8252, InPadIO => P8301,
\InPad~Q3\ => P8253, InPadIl => P8302,
\InPad~Q4\ => P8254, InPadI10 => P8311,
\InPad~Q5\ => P8255, InPadll1 =>P8312,
\InPad~Q6\ => P8256, InPadl12 => P8313,
\InPad~Q7\ => P8257, InPadl13 => P8314,
\InPad~Q8\ => P8258, InPadI14 => P8315,
\InPad~Q9\ => P8259, InPadIl5 => P8316,
\OutPad~ISO\ => P8334, InPadI2 => P8303,
\OutPad~IS10\ => P8344, InPadI3 => P8304,
\OutPad~IS11\ => P8345, InPadI4 => P8305,
\OutPad~IS12\ => P8346, InPadI5 => P8306,
\OutPad~IS13\ => P8347, InPadl6 => P8307,
\OutPad~IS14\ => P8348, InPadI7 => P8308,
\OutPad~IS15\ => P8349, InPadI8 => P8309,
\OutPad~IS1\ => P8335, InPadI9 => P&310,
\OutPad~IS2\ => P8336, InPadIlOV => P8317,
\OutPad~IS3\ => P8337, InPadQ0 => P8318,
\OutPad~IS4\ => P8338, InPadQ1 => P8319,
\OutPad~IS5\ => P8339, InPadQ10 => P8327,
\OutPad~IS6\ => P8340, InPadQ11 => P8328,
\OutPad~IS7\ => P8341, InPadQ12 => P8329,
\OutPad~IS8\ => P8342, InPadQ13 => P8330,
\OutPad~IS9\ => P8343, InPadQ14 => P8331,
\OutPad~QS0\ => P8350, InPadQ15 => P8332,
\OutPad~QS10\ => P8360, InPadQ2 => P8320,
\OutPad~QS11\ => P8361, InPadQ3 => P8321,
\OutPad~QS12\ => P8362, InPadQ4 => P8322,
\OutPad~QS13\ => P8363, InPadQ5 => P8366,
\OutPad~QS14\ => P8364, InPadQ6 => P8323,
\OutPad~QS15\ => P8365, InPadQ7 => P8324,
\OutPad~QS1\ => P8351, InPadQ8 => P8325,
\OutPad~QS2\ => P8352, InPadQ9 => P8326,
\OutPad~QS3\ => P8353, InPadQOV => P8333,
\OutPad~QS4\ => P8354, IncO => Inc0,
\OutPad~QS5\ => P8355, Incl =>Incl,
\OutPad~QS6\ => P8356, Inc2 => Inc2,

152

Inc3 => Inc3, \InPad~I5\ => P8339,

Inc4 => Inc4, \InPad~I6\ => P8340,

ODVin => ODVin, \InPad~I7\ => P8341,

ODVout => ODVout, \InPad~I8\ => P8342,

Oper => Oper, \InPad~I9\ => P8343,

OutPadISO => OutPadISO0, \InPad~QO0\ => P8350,

OutPadIS1 => OutPadIS1, \InPad~Q10\ => P8360,
OutPadIS10 => OutPadIS10, \InPad~Q11\=> P8361,
OutPadIS11 => OutPadIS11, \InPad~Q12\ => P8362,
OutPadIS12 => OutPadIS12, \InPad~Q13\ => P8363,
OutPadIS13 => OutPadIS13, \InPad~Q14\ => P8364,
OutPadIS14 => QutPadIS 14, \InPad~Q15\ => P8365,
OutPadIS15 => OutPadIS15, \InPad~Q1\ => P8351,

OutPadIS2 => OutPadIS2, \InPad~Q2\ => P8352,

OutPadIS3 => OutPadIS3, \InPad~Q3\ => P8353,

OutPadIS4 => OutPadIS4, \InPad~Q4\ => P8354,

OutPadIS5 => OutPadIS5, \InPad~Q5\ => P8355,

OutPadIS6 => OutPadIS6, \InPad~Q6\ => P8356,

OutPadIS7 => OutPadIS7, \InPad~Q7\ => P8357,

OutPadIS8 => OutPadIS8, \InPad~Q8\ => P8358,

OutPadIS9 => OutPadIS9, \InPad~Q9\ => P8359,
OutPadISOV => OutPadISOV, \OutPad~ISO\ => \OutPad~IS0\,
OutPadQS0 => OutPadQS0, \OutPad~IS10\ => \OutPad~IS10\,
OutPadQS1 => OutPadQS]1, \OutPad~IS11\ =>\OutPad~IS11\,
OutPadQS10 => OutPadQS10, \OutPad~IS12\ =>\OutPad~IS12\,
OutPadQS11 => OutPadQS11, \OutPad~IS13\ =>\OutPad~IS13\,
OutPadQS12 => OutPadQS12, \OutPad~IS14\ => \OutPad~IS14\,
OutPadQS13 => OutPadQS13, \OutPad~IS15\ => \OutPad~IS15\,
OutPadQS14 => OutPadQS14, \OutPad~IS1\ =>\OutPad~IS1\,
OutPadQS15 => OutPadQS15, \OutPad~IS2\ => \OutPad~IS2\,
OutPadQS2 => OutPadQS2, \OutPad~IS3\ => \OutPad~IS3\,
OutPadQS3 => OutPadQS3, \OutPad~IS4\ => \OutPad~IS4\,
OutPadQS4 => OutPadQS4, \OutPad~IS5\ => \OutPad~IS5\,
OutPadQS5 => OutPadQS5, \OutPad~IS6\ => \OutPad~IS6\,
OutPadQS6 => OutPadQS6, \OutPad~IS7\ => \OutPad~IS7\,
OutPadQS7 => OutPadQS7, \OutPad~IS8\ => \OutPad~IS8\,
OutPadQS8 => OutPadQSS, \OutPad~IS9\ => \OutPad~IS9\,
OutPadQS9 => OutPadQS9, \OutPad~QS0\ => \OutPad~QS0\,
OutPadQSOV => OutPadQSOV, \OutPad~QS10\=> \OutPad~QS10\,
PSV =>PSV, \OutPad~QS11\=>\OutPad~QS11\,
RBinSelect0 => RB_84 inSelect0, \OutPad~QS12\=> \OutPad~QS12\,
RBinSelect] => RB_84 inSelectl, \OutPad~QS13\=> \OutPad~QS13\,
RBinSelect2 => RB_84 inSelect2, \OutPad~QS14\=> \OutPad~QS14\,
UNP => UNP, \OutPad~QS15\=> \OutPad~QS15\,
URB => URB, \OutPad~QS1\ =>\OutPad~QS1\,
\InPad~I0\ => P8334, \OutPad~QS2\ => \OutPad~QS2\,
\InPad~I10\ => P8344, \OutPad~QS3\ => \OutPad~QS3\,
\InPad~I11\=> P8345, \OutPad~QS4\ => \OutPad~QS4\,
\InPad~I112\ => P8346, \OutPad~QS5\ => \OutPad~QS5\,
\InPad~I113\ => P8347, \OutPad~QS6\ => \OutPad~QS6\,
\InPad~I114\ => P8348, \OutPad~QS7\ => \OutPad~QS7\,
\InPad~I15\ => P8349, \OutPad~QS8\ => \OutPad~QSS8\,
\InPad~I1\ => P8335, \OutPad~QS9\ => \OutPad~QS9\
\InPad~I2\ => P8336,);

\InPad~I3\ => P8337,

\InPad~I4\ => P8338, end structural;

153

B. TEST BENCH FOR THE 32 RANGE BIN MODULATOR

-- Title : Test Bench for hb_32rbps
--Design :HB 32 RB 2

-- Author : Hakan Bergon

-- Company : NPS

-- File
$DSN\src\TestBench\hb_32rbps TB.vhd

-- Generated :7/29/2002, 9:02 AM

-- From : $DSN\src\hb_32rbps.vhd

-- By : Active-HDL Built-in Test
Bench Generator ver. 1.2s

-- Description : Automatically
generated Test Bench for hb_32rbps tb

library ieee;
use ieee.std_logic 1164.all;

-- Add your library and
packages declaration here ...

entity hb_32rbps_tb is
end hb_32rbps_tb;

architecture TB_ ARCHITECTURE of
hb_32rbps_tbis
-- Component declaration of
the tested unit
component hb_32rbps
port(
CLK :in std_logic;
DRFMO : in std_logic;
DRFMLI : in std_logic;
DRFM?2 : in std_logic;
DRFM3 : in std_logic;
DRFM4 : in std_logic;
ENABLE 1 :instd logic;
ENABLE 2 :instd logic;
ENABLE 3 :instd logic;
ENABLE 4 :instd logic;
GainO : in std_logic;
Gainl : in std_logic;
Gain2 : in std_logic;
Gain3 : in std_logic;
IncO : in std_logic;
Incl : in std_logic;
Inc2 : in std_logic;
Inc3 : in std_logic;
Inc4 : in std_logic;

154

InPadIO : in
InPadIl : in
InPadI2 : in
InPadI3 : in
InPadl4 : in
InPadI5 : in
InPadlI6 : in
InPadlI7 : in
InPadI8 : in
InPadI9 : in

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

InPadI10 : in std_logic;
InPadIl1 : in std_logic;
InPadI12 : in std_logic;
InPadl13 : in std_logic;
InPadl14 : in std_logic;
InPadlI15 : in std_logic;

InPadIOV :

in std_logic;

InPadQo : in std_logic;
InPadQ1 : in std_logic;
InPadQ?2 : in std_logic;
InPadQ3 : in std_logic;
InPadQ4 : in std_logic;
InPadQ5 : in std_logic;
InPadQ6 : in std_logic;
InPadQ7 : in std_logic;
InPadQ8 : in std_logic;
InPadQ9 : in std_logic;

InPadQ10
InPadQ11
InPadQ12 :
InPadQ13 :
InPadQ14 :
InPadQl15 :
InPadQOV
\InPad~I0\ :
\InPad~I1\ :
\InPad~I2\ :
\InPad~I3\ :
\InPad~I4\ :
\InPad~I5\
\InPad~I6\
\InPad~I7\
\InPad~I8\
\InPad~I9\
\InPad~I10\

\InPad~I11\:
\InPad~I12\ :
\InPad~I13\ :
\InPad~I14\ :
\InPad~I15\ :
\InPad~QO\ :
\InPad~Q1\ :
\InPad~Q2\ :
\InPad~Q3\ :

:in std_logic;
:in std_logic;

in std_logic;
in std_logic;
in std_logic;
in std_logic;
. in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;

:in std_logic;
:in std_logic;
:in std_logic;
:in std_logic;
:in std_logic;

:in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;

\InPad~Q4\ : in std_logic; \OutPad~IS7\ : out std_logic;
\InPad~Q5\ : in std_logic; \OutPad~IS8\ : out std_logic;
\InPad~Q6\ : in std_logic; \OutPad~IS9\ : out std_logic;
\InPad~Q7\ : in std_logic; \OutPad~IS10\ : out std_logic;
\InPad~Q8\ : in std_logic; \OutPad~IS11\ : out std_logic;
\InPad~Q9\ : in std_logic; \OutPad~IS12\ : out std_logic;

\InPad~Q10\ :
\InPad~Q11\ :
\InPad~Q12\ :
\InPad~Q13\:
\InPad~Q14\ :

\InPad~Q15\

in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
:in std_logic;

ODVin : in std_logic;
ODVout : out std_logic;
Oper : in std_logic;

OutPadISO0 : out std_logic; \OutPad~QS6\ : out std_logic;
OutPadIS1 : out std_logic; \OutPad~QS7\ : out std_logic;
OutPadIS2 : out std_logic; \OutPad~QS8\ : out std_logic;
OutPadIS3 : out std_logic; \OutPad~QS9\ : out std_logic;
OutPadIS4 : out std_logic; \OutPad~QS10\: out std logic;
OutPadISS5 : out std_logic; \OutPad~QS11\: out std_logic;
OutPadIS6 : out std_logic; \OutPad~QS12\: out std_logic;
OutPadIS7 : out std_logic; \OutPad~QS13\: out std logic;
OutPadIS8 : out std_logic; \OutPad~QS14\: out std_logic;
OutPadIS9 : out std_logic; \OutPad~QS15\: out std_logic;

\OutPad~IS13\ :
\OutPad~IS14\ :
\OutPad~IS15\ :
\OutPad~QSO0\ :
\OutPad~QSI\ :
\OutPad~QS2\ :
\OutPad~QS3\ :
\OutPad~QS4\ :
\OutPad~QS5\ :

out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std_logic;

OutPadIS10 : out std_logic; PSV :in std_logic;

OutPadIS11 : out std_logic; RB_81 inSelectO: in std_logic;
OutPadIS12 : out std_logic; RB_81 inSelectl: in std_logic;
OutPadIS13 : out std_logic; RB 81 inSelect2: in std_logic;
OutPadIS14 : out std_logic; RB 82 inSelect0: in std_logic;
OutPadIS15 : out std_logic; RB 82 inSelectl: in std_logic;

OutPadISOV : out std_logic;

OutPadQSo0 : out std_logic; RB_83 inSelect0: in std_logic;
OutPadQS1 : out std_logic; RB_83 inSelectl: in std_logic;
OutPadQS?2 : out std_logic; RB_83 inSelect2: in std_logic;
OutPadQS3 : out std_logic; RB_84 inSelect0: in std_logic;
OutPadQS4 : out std_logic; RB_84 inSelectl: in std_logic;
OutPadQSS5 : out std_logic; RB_84 inSelect2: in std_logic;
OutPadQS6 : out std_logic; UNP : in std_logic;
OutPadQS7 : out std_logic; URB : in std_logic);
OutPadQS8 : out std_logic; end component;

OutPadQS9 : out std_logic;

OutPadQS10 : out std_logic; -- Stimulus signals - signals mapped to
OutPadQS11 : out std_logic; the input and inout ports of tested entity
OutPadQS12 : out std_logic; signal CLK : std_logic;
OutPadQS13 : out std_logic; signal DRFMO : std_logic;
OutPadQS14 : out std_logic; signal DRFM1 : std_logic;
OutPadQS15 : out std_logic; signal DRFM2 : std_logic;
OutPadQSOV : out std_logic; signal DRFM3 : std_logic;
\OutPad~ISO\ : out std_logic; signal DRFM4 : std_logic;

\OutPad~IS1\ : out std_logic;
\OutPad~IS2\ : out std_logic;
\OutPad~IS3\ : out std_logic;
\OutPad~IS4\ : out std_logic;
\OutPad~IS5\ : out std_logic;

OutPad~IS6\

: out std_logic;

RB 82 inSelect2:

in std_logic;

signal ENABLE 1 : std logic;
signal ENABLE 2 : std logic;
signal ENABLE 3 : std logic;
signal ENABLE 4 : std logic;
signal Gain0 : std_logic;
signal Gainl : std_logic;

signal Gain2 : std_logic; signal \InPad~I15\: std_logic;

signal Gain3 : std_logic; signal \InPad~QO\ : std logic;
signal IncO : std_logic; signal \InPad~QI\ : std logic;
signal Inc1 : std_logic; signal \InPad~Q2\ : std logic;
signal Inc2 : std_logic; signal \InPad~Q?3\ : std logic;
signal Inc3 : std_logic; signal \InPad~Q4\ : std_logic;
signal Inc4 : std_logic; signal \InPad~Q5\ : std_logic;
signal InPadl0 : std_logic; signal \InPad~Q®6\ : std_logic;
signal InPadl1 : std_logic; signal \InPad~Q7\ : std_logic;
signal InPadlI2 : std_logic; signal \InPad~QS8\ : std_logic;
signal InPadI3 : std_logic; signal \InPad~QO\ : std_logic;
signal InPadl4 : std_logic; signal \InPad~Q10\ : std_logic;
signal InPadlS : std_logic; signal \InPad~Q11\ : std_logic;
signal InPadl6 : std_logic; signal \InPad~Q12\ : std_logic;
signal InPadI7 : std_logic; signal \InPad~Q13\ : std_logic;
signal InPadlI8 : std_logic; signal \InPad~Q14\ : std_logic;
signal InPadlI9 : std_logic; signal \InPad~Q15\ : std_logic;
signal InPadI10 : std_logic; signal ODVin : std_logic;
signal InPadI11 : std_logic; signal Oper : std_logic;

signal InPadl12 : std logic; signal PSV : std_logic;

signal InPadI13 : std_logic; signalRB_81 inSelect0: std_logic;
signal InPadl14 : std_logic; signal RB_81 inSelectl : std_logic;
signal InPadI15 : std_logic; signal RB_81 inSelect2 : std_logic;
signal InPadIOV : std_logic; signal RB_82 inSelect0 : std_logic;
signal InPadQO : std_logic; signal RB_82 inSelectl : std_logic;
signal InPadQ1 : std_logic; signal RB_82 inSelect2 : std_logic;
signal InPadQ?2 : std_logic; signal RB_83 inSelectO : std_logic;
signal InPadQ3 : std_logic; signal RB_83 inSelectl : std_logic;
signal InPadQ4 : std_logic; signal RB_ 83 inSelect2 : std_logic;
signal InPadQ5 : std_logic; signal RB 84 inSelect0 : std_logic;
signal InPadQ6 : std_logic; signal RB 84 inSelectl : std_logic;
signal InPadQ7 : std_logic; signal RB_84 inSelect2 : std_logic;
signal InPadQ8 : std_logic; signal UNP : std_logic;

signal InPadQ9 : std_logic; signal URB : std_logic;

signal InPadQ10 : std_logic; -- Observed signals - signals
signal InPadQ11 : std_logic; mapped to the output ports of tested entity

signal InPadQ12 : std_logic; signal ODVout : std_logic;
signal InPadQ13 : std_logic; signal OutPadISO : std_logic;
signal InPadQ14 : std_logic; signal OutPadIS1 : std_logic;
signal InPadQ15 : std_logic; signal OutPadIS2 : std logic;
signal InPadQOV : std_logic; signal OutPadIS3 : std_logic;
signal \InPad~I0\ : std logic; signal OutPadIS4 : std_logic;
signal \InPad~I1\ : std logic; signal OutPadISS5 : std_logic;
signal \InPad~I2\ : std logic; signal OutPadIS6 : std_logic;
signal \InPad~I3\ : std logic; signal OutPadIS7 : std_logic;
signal \InPad~I4\ : std_logic; signal OutPadIS8 : std_logic;
signal \InPad~I5\ : std_logic; signal OutPadIS9 : std_logic;
signal \InPad~I6\ : std_logic; signal OutPadIS10 : std_logic;
signal \InPad~I7\ : std_logic; signal OutPadIS11 : std_logic;
signal \InPad~I8\ : std_logic; signal OutPadIS12 : std_logic;
signal \InPad~I9\ : std_logic; signal OutPadIS13 : std_logic;
signal \InPad~I10\ : std logic; signal OutPadIS14 : std logic;
signal \InPad~I11\: std_logic; signal OutPadIS15 : std_logic;
signal \InPad~I12\ : std logic; signal OutPadISOV : std logic;

signal \InPad~I13\: std logic; signal OutPadQS0 : std_logic;
signal \InPad~I14\ : std logic; signal OutPadQS1 : std_logic;

156

signal OutPadQS2 : std_logic; UUT : hb_32rbps

signal OutPadQS3 : std_logic; port map (
signal OutPadQS4 : std_logic; CLK => CLK,
signal OutPadQS5 : std_logic; DRFMO0 => DRFMO,
signal OutPadQS6 : std_logic; DRFM1 => DRFMI,
signal OutPadQS7 : std_logic; DRFM?2 => DRFM2,
signal OutPadQSS : std_logic; DRFM3 => DRFM3,
signal OutPadQS9 : std_logic; DRFM4 => DRFM4,
signal OutPadQS10 : std logic; ENABLE 1=>ENABLE 1,
signal OutPadQS11 : std logic; ENABLE 2 =>ENABLE 2,
signal OutPadQS12 : std_logic; ENABLE 3 =>ENABLE 3,
signal OutPadQS13 : std logic; ENABLE 4 =>ENABLE 4,
signal OutPadQS14 : std logic; Gain0 => Gain0,
signal OutPadQS15 : std_logic; Gainl => Gainl,
signal OutPadQSOV : std_logic; Gain2 => Gain2,
signal \OutPad~ISO\ : std_logic; Gain3 => Gain3,
signal \OutPad~IS1\ : std_logic; Inc0 => Inc0,
signal \OutPad~IS2\ : std logic; Incl => Incl,
signal \OutPad~IS3\ : std_logic; Inc2 => Inc2,
signal \OutPad~IS4\ : std logic; Inc3 => Inc3,
signal \OutPad~IS5\ : std_logic; Inc4 => Inc4,
signal \OutPad~IS6\ : std logic; InPadl0 => InPadlo,
signal \OutPad~IS7\ : std_logic; InPadll => InPadIl,
signal \OutPad~IS8\ : std_logic; InPadI2 => InPadl2,
signal \OutPad~IS9\ : std_logic; InPadI3 => InPadI3,
signal \OutPad~IS10\ : std_logic; InPadl4 => InPadl4,
signal \OutPad~IS11\ : std_logic; InPadI5 => InPadlS5,
signal \OutPad~IS12\ : std_logic; InPadl6 => InPadl6,
signal \OutPad~IS13\: std_logic; InPadl7 => InPadl7,
signal \OutPad~IS14\ : std_logic; InPadI8 => InPadI8,
signal \OutPad~IS15\ : std_logic; InPadl9 => InPadl9,
signal \OutPad~QSO0\ : std logic; InPadl10 => InPadI 10,
signal \OutPad~QSI1\ : std_logic; InPadl11 => InPadIl1,
signal \OutPad~QS2\ : std_logic; InPadl12 => InPadI12,
signal \OutPad~QS3\ : std_logic; InPadl13 => InPadI13,
signal \OutPad~QS4\ : std logic; InPadl14 => InPadl 14,
signal \OutPad~QS5\ : std_logic; InPadI15 => InPadI15,
signal \OutPad~QS6\ : std_logic; InPadIlOV => InPadIOV,
signal \OutPad~QS7\ : std_logic; InPadQ0 => InPadQ0,
signal \OutPad~QS8\ : std _logic; InPadQ1 => InPadQ1,
signal \OutPad~QSO9\ : std logic; InPadQ2 => InPadQ?2,
signal \OutPad~QS10\ : std_logic; InPadQ3 => InPadQ3,
signal \OutPad~QS11\ : std_logic; InPadQ4 => InPadQ4,
signal \OutPad~QS12\ : std_logic; InPadQ5 => InPadQ5,
signal \OutPad~QS13\: std_logic; InPadQ6 => InPadQo,
signal \OutPad~QS14\ : std_logic; InPadQ7 => InPadQ7,
signal \OutPad~QS15\ : std_logic; InPadQ8 => InPadQ8,
--Signal is used to stop clock signal InPadQ9 => InPadQ9,
generators InPadQ10 => InPadQ]10,
signalEND SIM:BOOLEAN:=FALSE; InPadQ11 => InPadQl11,
InPadQ12 => InPadQ]12,
-- Add your code here ... InPadQ13 => InPadQ13,
InPadQ14 => InPadQ14,
begin InPadQ15 => InPadQ15,
InPadQOV => InPadQOV,
-- Unit Under Test port map \InPad~I0\ => \InPad~I0\,

157

\InPad~I1\ =>\InPad~I1\, OutPadQS5 => OutPadQSS5,

\InPad~I2\ => \InPad~I12)\, OutPadQS6 => OutPadQS6,
\InPad~I3\ => \InPad~I3\, OutPadQS7 => OutPadQS7,
\InPad~I4\ => \InPad~I14\, OutPadQS8 => OutPadQSS,
\InPad~I5\ => \InPad~I5\, OutPadQS9 => OutPadQS9,
\InPad~I6\ => \InPad~I6\, OutPadQS10 => OutPadQS10,
\InPad~I7\ =>\InPad~I7\, OutPadQS11 => OutPadQS11,
\InPad~I8\ => \InPad~I8\, OutPadQS12 => OutPadQS12,
\InPad~I9\ => \InPad~I9\, OutPadQS13 => OutPadQS13,
\InPad~I10\ => \InPad~110\, OutPadQS14 => OutPadQS14,
\InPad~I11\=>\InPad~I11\, OutPadQS15 => OutPadQS15,
\InPad~112\ =>\InPad~112\, OutPadQSOV => OutPadQSOV,
\InPad~I13\ =>\InPad~I13\, \OutPad~ISO\ => \OutPad~ISO0\,
\InPad~I114\ => \InPad~114\, \OutPad~IS1\ => \OutPad~IS1\,
\InPad~I15\ => \InPad~I15\, \OutPad~IS2\ => \OutPad~IS2\,
\InPad~QO0\ => \InPad~Q0\, \OutPad~IS3\ => \OutPad~IS3\,
\InPad~Q1\ =>\InPad~Q1\, \OutPad~IS4\ => \OutPad~IS4\,
\InPad~Q2\ => \InPad~Q2\, \OutPad~IS5\ => \OutPad~IS5\,
\InPad~Q3\ => \InPad~Q3\, \OutPad~IS6\ => \OutPad~IS6\,
\InPad~Q4\ => \InPad~Q4\, \OutPad~IS7\ => \OutPad~IS7\,
\InPad~Q5\ =>\InPad~Q5\, \OutPad~IS8\ => \OutPad~IS8\,
\InPad~Q6\ => \InPad~Q6\, \OutPad~IS9\ => \OutPad~IS9\,
\InPad~Q7\ => \InPad~Q7\, \OutPad~IS10\ =>\OutPad~IS10\,
\InPad~Q8\ => \InPad~Q8\, \OutPad~IS11\ =>\OutPad~IS11\,
\InPad~Q9\ => \InPad~Q9\, \OutPad~IS12\ =>\OutPad~IS12\,
\InPad~Q10\ => \InPad~Q10\, \OutPad~IS13\ =>\OutPad~IS13\,
\InPad~Q11\ => \InPad~Q11\, \OutPad~IS14\ => \OutPad~IS14\,
\InPad~Q12\ => \InPad~Q12\, \OutPad~IS15\ =>\OutPad~IS15\,
\InPad~Q13\ => \InPad~Q13\, \OutPad~QS0\ => \OutPad~QS0\,
\InPad~Q14\ => \InPad~Q14\, \OutPad~QS1\ => \OutPad~QS1\,
\InPad~Q15\ =>\InPad~Q15\, \OutPad~QS2\ => \OutPad~QS2\,
ODVin => ODVin, \OutPad~QS3\ => \OutPad~QS3\,
ODVout => ODVout, \OutPad~QS4\ => \OutPad~QS4\,

Oper => Oper, \OutPad~QS5\ => \OutPad~QS5\,
OutPadISO => OutPadISO0, \OutPad~QS6\ => \OutPad~QS6\,
OutPadIS1 => OutPadIS1, \OutPad~QS7\ => \OutPad~QS7\,
OutPadIS2 => OutPadIS2, \OutPad~QS8\ => \OutPad~QS8\,
OutPadIS3 => OutPadIS3, \OutPad~QS9\ => \OutPad~QS9\,
OutPadIS4 => OutPadIS4, \OutPad~QS10\ => \OutPad~QS10\,
OutPadIS5 => OutPadISS5, \OutPad~QS11\ =>\OutPad~QS11\,
OutPadIS6 => OutPadIS6, \OutPad~QS12\ =>\OutPad~QS12\,
OutPadIS7 => OutPadIS7, \OutPad~QS13\ => \OutPad~QS13\,
OutPadIS8 => OutPadISS8, \OutPad~QS14\ =>\OutPad~QS14\,
OutPadIS9 => OutPadIS9, \OutPad~QS15\ =>\OutPad~QS15\,
OutPadIS10 => OutPadIS10, PSV =>PSV,

OutPadIS11 => OutPadIS11, RB_81 inSelect0 =>RB 81 inSelect0,
OutPadIS12 => OutPadIS12, RB 81 inSelect] == RB_81 inSelectl,
OutPadIS13 => OutPadIS13, RB 81 inSelect2 =>RB_81 inSelect2,
OutPadIS14 => OutPadIS14, RB_82 inSelect0 =>RB 82 inSelect0,
OutPadIS15 => OutPadIS15, RB_82 inSelectl == RB 82 inSelectl,
OutPadISOV => OutPadISOV, RB_82 inSelect2 =>RB 82 inSelect2,
OutPadQS0 => OutPadQS0, RB_83 inSelect0 => RB 83 inSelect0,
OutPadQS1 => OutPadQS1, RB 83 inSelect]l == RB_83 inSelectl,
OutPadQS2 => OutPadQS2, RB_83 inSelect2 =>RB 83 inSelect2,
OutPadQS3 => OutPadQS3, RB 84 inSelect0 =>RB_84 inSelect0,
OutPadQS4 => OutPadQS4, RB 84 inSelect] =>RB_84 inSelectl,

158

RB 84 inSelect2 =>RB 84 inSelect2,

UNP => UNP,
URB => URB

)

--Below VHDL code is an
inserted .\compile\Pulse 1 first 10 samples.vhs
--User can modify it

STIMULUS: process

begin -- of stimulus process
--wait for <time to next event>; --

<current time>

Gain0 <="1";
Gainl <="1";
Gain2 <="'0";
Gain3 <="1";
Inc0 <="0";

Incl <="0";

Inc2 <="0";

Inc3 <="0";

Inc4 <="0";
DRFMO0 <="0';
DRFM1 <="0';
DRFM2 <="0";
DRFM3 <="0";
DRFM4 <="0";
ENABLE 1<="0"
ENABLE 2 <="0"
ENABLE 3 <='0"
ENABLE 4 <='1";
UNP <='0";
ODVin <="0';
PSV <='0";

URB <="'1"
Oper <='1';
InPadl0 <="'0";
InPadll <="'0";
InPadI2 <="'0";
InPadI3 <="'0";
InPadl4 <="'0";
InPadl5 <="'0";
InPadl6 <="'0";
InPadl7 <="'0";
InPadI8 <="'0";
InPadl9 <="'0";
InPadl10 <='0";
InPadIll <="0";
InPadI12 <="0';
InPadI13 <="0';
InPadl14 <="0',
InPadI15 <="0";
InPadlOV <="0";
InPadQ0 <="'0";
InPadQ1 <='0";

InPadQ2 <="0"
InPadQ3 <="'0";
InPadQ4 <="'0";
InPadQ5 <="'0";
InPadQ6 <='0";
InPadQ7 <='0";
InPadQ8 <='0";
InPadQ9 <='0";
InPadQ10 <="'0";
InPadQ11 <='0";
InPadQ12 <='0";
InPadQ13 <="'0";
InPadQ14 <='0";
InPadQ15 <="'0";
InPadQOV <='0";

\InPad~I0\ <="1";
\InPad~I1\ <="1";
\InPad~I2\ <="1";
\InPad~I3\ <="1";
\InPad~I4\ <="1";
\InPad~I5\<="1";
\InPad~I6\ <="1";
\InPad~I7\ <="1";
\InPad~I8\ <="1";
\InPad~I9\ <="1";
\InPad~I10\ <="1";
\InPad~I11\<="1";
\InPad~I12\ <="1";
\InPad~I13\<="1";
\InPad~I114\ <="1";
\InPad~I15\ <="1";
\InPad~QO0\ <="1";
\InPad~Q1\ <="1";
\InPad~Q2\ <="1";
\InPad~Q3\ <="1";
\InPad~Q4\ <="'1";
\InPad~Q5\ <="1";
\InPad~Q6\ <="1";
\InPad~Q7\ <="'1";
\InPad~Q8\ <="1";
\InPad~Q9\ <="1";
\InPad~Q10\ <="1";
\InPad~Q11\ <="1";
\InPad~Q12\ <="1";
\InPad~Q13\ <="1";
\InPad~Q14\ <="1";
\InPad~Q15\ <="1";

wait for 2 ns; --2 ns

Gain0 <="1";
Gainl <="1";
Gain2 <="'0";
Gain3 <="1";
IncO <="0";
Incl <='0";
Inc2 <="0";

Inc3 <='0"; Gain3 <="1";
Inc4 <="0"; IncO <="0";
wait for 2 ns; --4 ns Incl <="1";
Gain0 <="1"; Inc2 <="0";
Gainl <="1"; Inc3 <='0";
Gain2 <='0"; Inc4 <='0";
Gain3 <="1"; wait for 2 ns; --16 ns
Inc0 <="1"; Gain0 <="1";
Incl <="0"; Gainl <="1";
Inc2 <="0"; Gain2 <="1";
Inc3 <='0"; Gain3 <="1";
Inc4 <="0"; IncO <="1";
wait for 2 ns; Incl <='0";
Gain0 <="1"; Inc2 <="1";
Gainl <="'0"; Inc3 <='0";
Gain2 <="1"; Inc4 <="0";
Gain3 <="1"; ENABLE 4 <='0";
Inc0 <="1"; ENABLE 3 <="'1};
Incl <='0"; wait for 2 ns; --18 ns
Inc2 <="0"; Gain0 <="1";
Inc3 <='0"; Gainl <="'0";
Inc4 <="0"; Gain2 <="1";
wait for 2 ns; Gain3 <="1";
Gain0 <="1"; IncO <="0";
Gainl <="'0"; Incl <="1";
Gain2 <="1"; Inc2 <="0";
Gain3 <="1"; Inc3 <='0";
Inc0 <="0"; Inc4 <="0";
Incl <="1"; wait for 2 ns; --20 ns
Inc2 <="0"; Gain0 <="1";
Inc3 <="0"; Gainl <="'0";
Inc4 <="0"; Gain2 <="1";
wait for 2 ns; Gain3 <="1";
Gain0 <="1"; IncO <="1";
Gainl <="'0"; Incl <="1";
Gain2 <="1"; Inc2 <="0";
Gain3 <="1"; Inc3 <='0";
Inc0 <="1"; Inc4 <='0";
Incl <="0"; wait for 2 ns; --22 ns
Inc2 <='0"; Gain0 <="'0";
Inc3 <="0"; Gainl <="1";
Inc4 <="0"; Gain2 <="1";
wait for 2 ns; Gain3 <="1";
Gain0 <="1"; IncO <="1";
Gainl <="1"; Incl <='0";
Gain2 <="'0"; Inc2 <="1";
Gain3 <="1"; Inc3 <="0";
IncO <="1"; Inc4 <="0";
Incl <="0"; wait for 2 ns; --24 ns
Inc2 <="0"; Gain0 <="'0";
Inc3 <="0"; Gainl <="1";
Inc4 <="0"; Gain2 <="1";
wait for 2 ns; Gain3 <="1";
Gain0 <="1"; IncO <="0";
Gainl <="1"; Incl <='0";
Gain2 <="'0"; Inc2 <="1";

Inc3 <="0";
Inc4 <="0";

wait for 2 ns; --26 ns

Gain0 <="'0";
Gainl <="1";
Gain2 <="1";
Gain3 <="1";
Inc0 <="1";
Incl <="0";
Inc2 <="1";
Inc3 <="0";
Inc4 <="0";

wait for 2 ns; --28 ns

Gain0 <="'0";
Gainl <="1";
Gain2 <="1";
Gain3 <="1";
Inc0 <="1";
Incl <='0";
Inc2 <="1";
Inc3 <="0";
Inc4 <="0";

wait for 2 ns; --30 ns

Gain0 <="'0";
Gainl <="1";
Gain2 <="1";
Gain3 <="1";
Inc0 <="0";
Incl <="1";
Inc2 <="1";
Inc3 <="0";
Inc4 <="0";

wait for 2 ns; --32 ns

Gain0 <="'0";
Gainl <="1";
Gain2 <="1";
Gain3 <="1";
Inc0 <="0";
Incl <="1";
Inc2 <="1";
Inc3 <="0";
Inc4 <="0";

ENABLE 2 <="'11;
ENABLE 3 <='0}
wait for 2 ns; --34 ns

Gain0 <="'0";
Gainl <="1";
Gain2 <="1";
Gain3 <="1";
Inc0 <="0";
Incl <="1";
Inc2 <="1";
Inc3 <="0";
Inc4 <="0";

wait for 2 ns; --36 ns

Gain0 <="'0";

161

Gainl <="1";
Gain2 <="1";
Gain3 <="1";
Inc0 <="0";
Incl <="1";
Inc2 <="1";
Inc3 <='0";
Inc4 <='0";
wait for 2 ns;
Gain0 <="1";
Gainl <='0";
Gain2 <="1";
Gain3 <="1";
Inc0 <="0";
Incl <="1";
Inc2 <="1";
Inc3 <='0";
Inc4 <='0";
wait for 2 ns;
Gain0 <="1";
Gainl <="'0";
Gain2 <="1";
Gain3 <="1";
IncO <="0";
Incl <="1";
Inc2 <="1";
Inc3 <='0";
Inc4 <="0";
wait for 2 ns;
Gain0 <="1";
Gainl <="1";
Gain2 <='0";
Gain3 <="1";
IncO <="1";
Incl <='0";
Inc2 <="1";
Inc3 <='0";
Inc4 <='0";
wait for 2 ns;
Gain0 <="1";
Gainl <="1";
Gain2 <="'0";
Gain3 <="1";
Inc0 <="0";
Incl <="1";
Inc2 <="1";
Inc3 <="0";
Inc4 <="0";
wait for 2 ns;
Gain0 <="1";
Gainl <='0";
Gain2 <="1";
Gain3 <="1";
Inc0 <="0";
Incl <="1";
Inc2 <="1";

--38 ns

--40 ns

--42 ns

--44 ns

--46 ns

Inc3 <="0";

Inc4 <="0";

wait for 2 ns; --48 ns
Gain0 <="1";

Gainl <="1";

Gain2 <="1";

Gain3 <="1";

Inc0 <="0";

Incl <="1";

Inc2 <="0";

Inc3 <="1";

Inc4 <="0";
ENABLE 2 <='0}
ENABLE 1 <="'1};
wait for 2 ns; --50 ns
Gain0 <="1";

Gainl <="1";

Gain2 <='0";

Gain3 <="1";

IncO <="0";

Incl <="1";

Inc2 <="1";

Inc3 <="0";

Inc4 <="0";

wait for 2 ns; --52 ns
Gain0 <="1";

Gainl <="'0";

Gain2 <="1";

Gain3 <="1";

Inc0 <="0";

Incl <="0";

Inc2 <="0";

Inc3 <="1";

Inc4 <="0";

wait for 2 ns; --54 ns
Gain0 <="1";

Gainl <="1";

Gain2 <="'0";

Gain3 <="1";

IncO <="1";

Incl <="1";

Inc2 <="1";

Inc3 <="0";

Inc4 <='0";

wait for 2 ns; --56 ns
Gain0 <="1";

Gainl <="1";

Gain2 <="'0";

Gain3 <="1";

Inc0 <="1";

Incl <="1";

Inc2 <="1";

Inc3 <="0";

Inc4 <="0";

wait for 2 ns; --58 ns
Gain0 <="1";

162

Gainl <='0";
Gain2 <="1";
Gain3 <="1";

Inc0 <="0";

Incl <='0";

Inc2 <='0";

Inc3 <="1";

Inc4 <='0";

wait for 2 ns; --60 ns
Gain0 <="1";
Gainl <="1";
Gain2 <="'0";
Gain3 <="1";

Inc0 <="0";

Incl <="0";

Inc2 <="0";

Inc3 <="1";

Inc4 <='0";

wait for 2 ns; --64 ns
Gain0 <="1";
Gainl <="1";
Gain2 <="'0";
Gain3 <="1";

Inc0 <="0";

Incl <='0";

Inc2 <="0";

Inc3 <="1";

Inc4 <="0";

wait for 2 ns; --64 ns
UNP <='1";
ENABLE 1 <='0';

wait for 2 ns; --66 ns

UNP <=0
DREMO <= '07;
DREMI <= '0;
DREM2 <= 07;
DRFM3 <= 07;
DRFM4 <= 07;
PSV <='I';

wait for 14 ns; --80 ns

DRFMO <="1";
DRFM1 <="0';
DRFM2 <="0"
DRFM3 <="0"
DRFM4 <="'0';

wait for 8 ns; --88 ns

DRFMO <="'0';
DRFMI1 <="1};
DRFM2 <="0";
DRFM3 <="0";
DRFM4 <="0";

wait for 4 ns; --92 ns

DRFMO <="1";
DRFMI1 <="1};
DRFM2 <="'0';
DRFM3 <="'0';

DRFM4 <="0';
wait for 4 ns; --96 ns
DRFMO <="0";
DRFMI1 <="0";
DRFM2 <="1";
DRFM3 <="0";
DRFM4 <="0";

wait for 4 ns; --100 ns

DRFMO <=1
DRFMI <=0
DRFM2 <='1";
DRFM3 <="0';
DRFM4 <="0';
wait for 4 ns; --104 ns
DRFMO0 <="0';
DRFM1 <="1";
DRFM2 <="1";
DRFM3 <="0';
DRFM4 <="0';
wait for 2 ns; --106 ns
DRFMO <="1";
DRFM1 <="1";
DRFM2 <="1";
DRFM3 <="0';
DRFM4 <="0';
wait for 4 ns; --110 ns
DRFMO0 <="0';
DRFM1 <="0';
DRFM2 <="0';
DRFM3 <="1";
DRFM4 <="0';
wait for 2 ns; --112 ns
DRFMO <="1";
DRFM1 <="0';
DRFM2 <="0';
DRFM3 <="1";
DRFM4 <="0';
wait for 2 ns; --114 ns
DRFMO0 <="0';
DRFM1 <="1";
DRFM2 <="0";
DRFM3 <="1";
DRFM4 <="0';
wait for 4 ns; --118 ns
DRFMO <="1";
DRFM1 <="1";
DRFM2 <="0';
DRFM3 <="1";
DRFM4 <="0';
wait for 2 ns; --120 ns
DRFMO0 <="0';
DRFM1 <="0";
DRFM2 <="1";
DRFM3 <="1";
DRFM4 <="0';
wait for 2 ns; --122 ns

163

DRFMO <="1";
DRFM1 <="0';
DRFM2 <="1";
DRFM3 <="1";
DRFM4 <="0';
wait for 2 ns; --124 ns
DRFMO0 <="0",
DRFMI1 <="1";
DRFM2 <="'1';
DRFM3 <=1
DRFM4 <=0,
wait for 2 ns; --126 ns
DRFMO0 <="1";
DRFMI1 <="1";
DRFM2 <="1";
DRFM3 <="1";
DRFM4 <="0";
wait for 2 ns; --128 ns
DRFMO0 <="0";
DRFMI <=0
DRFM2 <="0";
DRFM3 <="0";
DRFM4 <="1";
wait for 2 ns; --130 ns
DRFMO0 <="1";
DRFMI1 <=0,
DRFM2 <="0',
DRFM3 <=0,
DRFM4 <="1";
wait for 2 ns; --132 ns
DRFMO0 <='0";
DRFMI <="1";
DRFM2 <="0',
DRFM3 <=0,
DRFM4 <="1";
wait for 2 ns; --134 ns
DRFMO <="1";
DRFMI1 <="1";
DRFM2 <="0',
DRFM3 <="0";
DRFM4 <="1";
wait for 2 ns; --136 ns
DRFMO0 <="0";
DRFM1 <="0';
DRFM2 <="1';
DRFM3 <=0,
DRFM4 <="1",
wait for 2 ns; --138 ns
DRFMO0 <="1";
DRFMI1 <="0";
DRFM2 <="1";
DRFM3 <="0";
DRFM4 <="1";
wait for 2 ns; --140 ns
DRFMO0 <="1";
DRFMI1 <="1';

DRFM2 <="1";
DRFM3 <="0';
DRFM4 <="1";
wait for 2 ns; --142 ns
DRFMO <="0";
DRFMI <="0";
DRFM2 <="0";
DRFM3 <="1";
DRFM4 <="'1";
wait for 2 ns; --144 ns
DRFMO <="'1";
DRFM1 <="0';
DRFM2 <="0';
DRFM3 <="1";
DRFM4 <="1";
wait for 2 ns; --146 ns
DRFMO <="0";
DRFMI <="1";
DRFM2 <="0";
DRFM3 <="'1";
DRFM4 <="1";
wait for 2 ns; --148 ns
DRFMO0 <="0';
DRFM1 <="0';
DRFM2 <="1";
DRFM3 <="1";
DRFM4 <="1";
wait for 2 ns; --150 ns
DRFMO0 <="1";
DRFMI <="0";
DRFM2 <="1";
DRFM3 <="1";
DRFM4 <="1";
wait for 2 ns; --152 ns
DRFMO <="0";
DRFMI <="1";
DRFM2 <="1";
DRFM3 <="1";
DRFM4 <="1";
wait for 2 ns; --154 ns
DRFMO0 <="0";
DRFM1 <="0";
DRFM2 <="0';
DRFM3 <="0';
DRFM4 <="0';
wait for 2 ns; --156 ns
DRFMO0 <="1";
DRFMI <="0";
DRFM2 <="0";
DRFM3 <="0";
DRFM4 <="0";
wait for 2 ns; --158 ns
DRFMO <="1";
DRFMI <="1";
DRFM2 <="0';
DRFM3 <="0';

164

DRFM4 <="0',
wait for 2 ns; --160 ns
DRFMO0 <="'0";
DRFMI1 <='0";
DRFM2 <="'1";
DRFM3 <="'0";
DRFM4 <="'0";
wait for 2 ns; --162 ns
DRFMO <=0,
DRFMI1 <="1";
DRFM2 <="1";
DRFM3 <="0';
DRFM4 <="0',
wait for 2 ns; --164 ns
DRFMO0 <="'0";
DRFMI1 <='0";
DRFM2 <="0';
DRFM3 <="1";
DRFM4 <="0';
wait for 2 ns; --166 ns
DRFMO <="1";
DRFM1 <='0";
DRFM2 <="'0";
DRFM3 <="1";
DRFM4 <="'0";
wait for 2 ns; --168 ns
DRFMO0 <="1";
DRFMI <="'1";
DRFM2 <="0';
DRFM3 <="1";
DRFM4 <="0";
wait for 2 ns; --170 ns
DRFMO0 <="0',
DRFMI <='0";
DRFM2 <="1";
DRFM3 <="'1";
DRFM4 <="'0";
wait for 2 ns; --172 ns
DRFMO0 <="'0";
DRFM1 <="1";
DRFM2 <="1";
DRFM3 <="1";
DRFM4 <="0',
wait for 2 ns; --174 ns
DRFMO0 <="'0";
DRFMI1 <='0";
DRFM2 <="'0";
DRFM3 <="'0";
DRFM4 <="1";
wait for 2 ns; --176 ns
DRFMO0 <="0';
DRFM1 <="1";
DRFM2 <="0";
DRFM3 <="'0";
DRFM4 <="'1";
wait for 2 ns; --178 ns

DRFMO <="1"

DRFMI1 <="1";
DRFM2 <="0';
DRFM3 <="0';
DRFM4 <="1";

wait for 2 ns; --180 ns
PSV <='0";

wait for 66 ns; --244 ns
END SIM <= TRUE;
-- end of stimulus events
wait;
end process; -- end of stimulus process

CLOCK_CLK : process
begin
--this process was generated
based on formula: 00 ns, 1 1 ns -r 2 ns
--wait for <time to next
event>; -- <current time>
if END SIM = FALSE then
CLK <=0
wait for 1 ns; --0 fs

else
wait;
end if}
if END_SIM = FALSE then
CLK <="'1";
wait for 1 ns; --1 ns
else
wait;
end if;

end process;

CLOCK RB 84 inSelect0 : process
begin
--this process was generated
based on formula: 1 0 ns, 0 2 ns -r 4 ns
--wait for <time to next
event>; -- <current time>
if END SIM = FALSE then
RB_84 inSelect0 <="1";
wait for 2 ns; --0 fs
else
wait;
end if}
if END_SIM = FALSE then
RB_84 inSelect0 <="'0';
wait for 2 ns; --2 ns
else
wait;
end if;
end process;

CLOCK RB 84 inSelectl : process
begin

165

--this process was generated
based on formula: 1 0 ns, 0 4 ns -r 8 ns
--wait for <time to next
event>; -- <current time>
if END_SIM = FALSE then
RB_84 inSelect] <="1";
wait for 4 ns; --0 fs
else
wait;
end if}
if END SIM = FALSE then
RB 84 inSelectl <="'0";
wait for 4 ns; --4 ns
else
walit;
end if;
end process;

CLOCK RB 84 inSelect2 : process
begin
--this process was generated
based on formula: 1 0 ns, 0 8 ns -r 16 ns
--wait for <time to next
event>; -- <current time>
if END_SIM = FALSE then
RB_84 inSelect2 <="1";
wait for 8 ns; --0 fs
else
wait;
end if;
if END_SIM = FALSE then
RB 84 inSelect2 <="'0";
wait for 8 ns; --8 ns
else
wait;
end if;
end process;

CLOCK RB 83 inSelect0 : process
begin
--this process was generated
based on formula: 1 O ns, 0 2 ns -r 4 ns
--wait for <time to next
event>; -- <current time>
if END_SIM = FALSE then
RB_83 inSelect0 <="1";
wait for 2 ns; --0 fs
else
wait;
end if;
if END_SIM = FALSE then
RB_83 inSelect0 <="'0";
wait for 2 ns; --2 ns
else
wait;
end if}

end process;

CLOCK RB 83 inSelectl : process
begin
--this process was generated
based on formula: 1 0 ns, 0 4 ns -r 8 ns
--wait for <time to next
event>; -- <current time>
if END SIM = FALSE then
RB_83 inSelectl <="1";
wait for 4 ns; --0 fs
else
wait;
end if;
if END_SIM = FALSE then
RB_83 inSelectl <="'0";
wait for 4 ns; --4 ns
else
wait;
end if}
end process;

CLOCK RB 83 inSelect2 : process
begin
--this process was generated
based on formula: 1 0 ns, 0 8 ns -r 16 ns
--wait for <time to next
event>; -- <current time>
if END_SIM = FALSE then
RB 83 inSelect2 <="'1";
wait for 8 ns; --0 fs
else
wait;
end if}
if END_SIM = FALSE then
RB 83 inSelect2 <="'0";
wait for 8 ns; --8 ns
else
wait;
end if}
end process;

CLOCK _RB_82 inSelect0 : process
begin
--this process was generated
based on formula: 1 0 ns, 0 2 ns -r 4 ns
--wait for <time to next
event>; -- <current time>
if END_SIM = FALSE then
RB_82 inSelect0 <="'1";
wait for 2 ns; --0 fs
else
wait;
end if}
if END_SIM = FALSE then
RB 82 inSelect0 <="'0";

166

wait for 2 ns; --2 ns
else
wait;
end if}
end process;

CLOCK RB 82 inSelectl : process
begin
--this process was generated
based on formula: 1 0 ns, 0 4 ns -r 8 ns
--wait for <time to next
event>; -- <current time>
if END_SIM = FALSE then
RB_82 inSelectl <="1";
wait for 4 ns; --0 fs
else
wait;
end if;
if END_SIM = FALSE then
RB 82 inSelectl <="'0";
wait for 4 ns; --4 ns
else
wait;
end if}
end process;

CLOCK _RB_82 inSelect2 : process
begin
--this process was generated
based on formula: 1 0 ns, 0 8 ns -r 16 ns
--wait for <time to next
event>; -- <current time>
if END_SIM = FALSE then
RB_82 inSelect2 <="1";
wait for 8 ns; --0 fs
else
wait;
end if;
if END_SIM = FALSE then
RB 82 inSelect2 <="'0";
wait for 8 ns; --8 ns
else
wait;
end if}
end process;

CLOCK RB 81 inSelect0 : process
begin
--this process was generated
based on formula: 1 0 ns, 0 2 ns -r 4 ns
--wait for <time to next
event>; -- <current time>
if END_SIM = FALSE then
RB_81 inSelect0 <="1";
wait for 2 ns; --0 fs
else

wait;
end if}
if END_SIM = FALSE then
RB 81 inSelect0 <="'0";
wait for 2 ns; --2 ns
else
wait;
end if;
end process;

CLOCK RB_81 inSelectl : process
begin
--this process was generated
based on formula: 1 0 ns, 0 4 ns -r 8 ns
--wait for <time to next
event>; -- <current time>
if END_SIM = FALSE then
RB_81 inSelectl <="'1';
wait for 4 ns; --0 fs
else
wait;
end if}
if END_SIM = FALSE then
RB 81 inSelectl <="'0";
wait for 4 ns; --4 ns
else
wait;
end if;
end process;

CLOCK RB_81 inSelect2 : process
begin
--this process was generated
based on formula: 1 0 ns, 0 8 ns -r 16 ns

167

--wait for <time to next
event>; -- <current time>
if END_SIM = FALSE then
RB_81 inSelect2 <="1";
wait for 8 ns; --0 fs
else
wait;
end if;
if END SIM = FALSE then
RB 81 inSelect2 <="'0";
wait for 8 ns; --8 ns
else
wait;
end if;
end process;

-- Add your stimulus here ...
end TB_ ARCHITECTURE;

configuration
TESTBENCH_FOR hb 32rbps of hb_32rbps_tb
is
for TB_ARCHITECTURE
for UUT : hb_32rbps
use entity
work.hb_32rbps(structural);
end for;
end for;
end TESTBENCH_FOR _hb_32rbps;

C.

EXECUTING MACRO FOR THE 32 RANGE BIN TEST BENCH

SetActiveLib -work
comp

“$DSN\src\hb_32rbps.vhd”

comp

-include

-include

“$DSN\src\TestBench\hb_32rbps TB.vhd”
asim TESTBENCH_FOR_hb_32rbps

wave
wave -noreg CLK

wave -noreg DRFMO
wave -noreg DRFM1
wave -noreg DRFM?2
wave -noreg DRFM3
wave -noreg DRFM4
wave -noreg ENABLE 1
wave -noreg ENABLE 2
wave -noreg ENABLE 3
wave -noreg ENABLE 4
wave -noreg GainQ
wave -noreg Gainl

wave -noreg Gain2

wave -noreg Gain3

wave -noreg IncO

wave -noreg Incl

wave -noreg Inc2

wave -noreg Inc3

wave -noreg Inc4

wave -noreg InPadl0
wave -noreg InPadl1
wave -noreg InPadl2
wave -noreg InPadI3
wave -noreg InPadl4
wave -noreg InPadl5
wave -noreg InPadl6
wave -noreg InPadl7
wave -noreg InPadlI8
wave -noreg InPadl9
wave -noreg InPadl10
wave -noreg InPadl11
wave -noreg InPadl12
wave -noreg InPadl13
wave -noreg InPadl14
wave -noreg InPadl15
wave -noreg InPadlOV
wave -noreg InPadQ0
wave -noreg InPadQ1
wave -noreg InPadQ2
wave -noreg InPadQ3
wave -noreg InPadQ4
wave -noreg InPadQ5
wave -noreg InPadQ6
wave -noreg InPadQ7
wave -noreg InPadQ8
wave -noreg InPadQ9
wave -noreg InPadQ10

168

wave -noreg InPadQ11
wave -noreg InPadQ12
wave -noreg InPadQ13
wave -noreg InPadQ14
wave -noreg InPadQ15
wave -noreg InPadQOV
wave -noreg {\InPad~I0\}
wave -noreg {\InPad~I1\}
wave -noreg {\InPad~I2\}
wave -noreg {\InPad~I3\}
wave -noreg {\InPad~I4\}
wave -noreg {\InPad~I5\}
wave -noreg {\InPad~I6\}
wave -noreg {\InPad~I7\}
wave -noreg {\InPad~I8\}
wave -noreg {\InPad~I9\}
wave -noreg {\InPad~I10\}
wave -noreg {\InPad~I11\}
wave -noreg {\InPad~I12\}
wave -noreg {\InPad~I13\}
wave -noreg {\InPad~I14\}
wave -noreg {\InPad~I15\}
wave -noreg {\InPad~QO\}
wave -noreg {\InPad~Q1\}
wave -noreg {\InPad~Q2\}
wave -noreg {\InPad~Q3\}
wave -noreg {\InPad~Q4\}
wave -noreg {\InPad~Q5\}
wave -noreg {\InPad~Q6\}
wave -noreg {\InPad~Q7\}
wave -noreg {\InPad~Qg8\}
wave -noreg {\InPad~Q9\}
wave -noreg {\InPad~Q10\}
wave -noreg {\InPad~Q11\}
wave -noreg {\InPad~Q12\}
wave -noreg {\InPad~Q13\}
wave -noreg {\InPad~Q14\}
wave -noreg {\InPad~Q15\}
wave -noreg ODVin

wave -noreg ODVout

wave -noreg Oper

wave -noreg OutPadISO
wave -noreg OutPadIS1
wave -noreg OutPadIS2
wave -noreg OutPadIS3
wave -noreg OutPadIS4
wave -noreg OutPadIS5
wave -noreg OutPadIS6
wave -noreg OutPadIS7
wave -noreg OutPadIS8
wave -noreg OutPadIS9
wave -noreg OutPadIS10
wave -noreg OutPadIS11
wave -noreg OutPadIS12

wave -noreg OutPadIS13
wave -noreg OutPadIS14
wave -noreg OutPadIS15
wave -noreg OutPadISOV
wave -noreg OutPadQS0
wave -noreg OutPadQS1
wave -noreg OutPadQS2
wave -noreg OutPadQS3
wave -noreg OutPadQS4
wave -noreg OutPadQS5
wave -noreg OutPadQS6
wave -noreg OutPadQS7
wave -noreg OutPadQS8
wave -noreg OutPadQS9
wave -noreg OutPadQS10
wave -noreg OutPadQS11
wave -noreg OutPadQS12
wave -noreg OutPadQS13
wave -noreg OutPadQS14
wave -noreg OutPadQS15
wave -noreg OutPadQSOV
wave -noreg {\OutPad~ISO\}
wave -noreg {\OutPad~IS1\}
wave -noreg {\OutPad~IS2\}
wave -noreg {\OutPad~IS3\}
wave -noreg {\OutPad~IS4\}
wave -noreg {\OutPad~IS5\}
wave -noreg {\OutPad~IS6\}
wave -noreg {\OutPad~IS7\}
wave -noreg {\OutPad~IS8\}
wave -noreg {\OutPad~IS9\}
wave -noreg {\OutPad~IS10\}
wave -noreg {\OutPad~IS11\}
wave -noreg {\OutPad~IS12\}
wave -noreg {\OutPad~IS13\}
wave -noreg {\OutPad~IS14\}
wave -noreg {\OutPad~IS15\}
wave -noreg {\OutPad~QSO0\}
wave -noreg {\OutPad~QS1\}

169

wave -noreg {\OutPad~QS2\}
wave -noreg {\OutPad~QS3\}
wave -noreg {\OutPad~QS4\}
wave -noreg {\OutPad~QS5\}
wave -noreg {\OutPad~QS6\}
wave -noreg {\OutPad~QS7\}
wave -noreg {\OutPad~QS8\}
wave -noreg {\OutPad~QS9\}
wave -noreg {\OutPad~QS10\}
wave -noreg {\OutPad~QS11\}
wave -noreg {\OutPad~QS12\}
wave -noreg {\OutPad~QS13\}
wave -noreg {\OutPad~QS14\}
wave -noreg {\OutPad~QS15\}
wave -noreg PSV

wave -noreg RB_81 inSelect0
wave -noreg RB_81 inSelectl
wave -noreg RB_81 inSelect2
wave -noreg RB_82 inSelect0
wave -noreg RB 82 inSelectl
wave -noreg RB_ 82 inSelect2
wave -noreg RB_83 inSelect0
wave -noreg RB 83 inSelectl
wave -noreg RB 83 inSelect2
wave -noreg RB_84 inSelect0
wave -noreg RB_84 inSelectl
wave -noreg RB_84 inSelect2
wave -noreg UNP

wave -noreg URB

run 200.00 ns

The following lines can be used for
timing simulation

#

<backannotated vhdl file name>

comp

acom

-include

“$DSN\src\TestBench\hb 32rbps TB tim cfg.v

hd”

asim TIMING_FOR_hb_32rbps

THIS PAGE INTENTIONALLY LEFT BLANK

170

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

LIST OF REFERENCES

Ekestorm, S. R. T. and Karow, C., An All-Digital Image Synthesizer For
Countering High-Resolution Imaging Radars, Master’s Thesis, Naval
Postgraduate School, Monterey, California, September 2000.

Guillaume, C. H., Circuit Design and Simulation For A Digital Image Synthesizer
Range Bin Modulator, Master’s Thesis, Naval Postgraduate School, Monterey,
California, March 2002.

Borrione, D. D., Pierre, L. V., Salem, A. M., Formal Verification of VHDL
Descriptions in Prevail Environment, IEEE Design and Test of Computers , Vol.
9, Issue 2, pp. 42-56, June 1992.

Hua, G. X.; Zhang, H., Formal Semantics of VHDL for Verification of Circuit
Designs, Computer Design: VLSI in Computers and Processors, 1993. ICCD '93.
Proceedings, 1993 IEEE International Conference, pp. 446 —449, 1993.

Bergeron, J., Writing Testbenches: Functional Verification of HDL Model, Kluver
Academic Publishers, Norwell Massachusetts USA, Sixth Printing, 2002.

York, G., Mueller-Thuns, R., Patel, J., Beatty, D., An Integrated Environment for
HDL Verification, Verilog HDL Conference, 1995. Proceedings, 1995 IEEE
International, pp. 9—18, 1995.

Borman, J., Lohse, J., Payer, M., Venzl, G., Model Checking in Industrial
Hardware Design, ACM/IEEE Design Automation Conference, 1995.

Deharbe, D., Shankar, S., Clarke, E. M., Formal Verification of VHDL: The
Model Checker CV, Integrated Circuit Design, 1998. Proceedings. XI Brazilian
Symposium, pp. 95 —98, 1998.

Beer, 1., Ben-David, S., Eisner, C., Landver, A., RuleBase: An Industry-Oriented
Formal Verification Tool, Proceedings, Design Automation Conference, 1996.

Borrione, D. D., Pierre, L. V., Salem, A. M., Formal Verification of VHDL
Descriptions in Prevail Environment, IEEE Design & Test of Computers, Vol. 9,
Issue 2, pp. 42 —56, June 1992.

Binder, R. V., Testing Object-Oriented Systems, Addison-Wesley, Third Printing
June 2001.

Fouts, D. J., Pace, P. E., Karow, C., Ekestorm, S. R. T., 4 Single-Chip False

Target Radar Image Generator for Countering Wideband Imaging Radars, IEEE
Journal of Solid-State Circuits, Vol. 37, No. 6, June 2002.

171

[13] LeDantec, F., Performance Analysis of a Digital Image Synthesizer as a Counter-
Measure Against Inverse Synthetic Aperture Radars,, Master’s Thesis, Naval
Postgraduate School, Monterey, California, September 2002.

[14] Yalamanchili, S., Introductory VHDL From Simulation to Synthesis, Prentice-
Hall, Upper Saddle River, New Jersey, 2001

172

10.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Professor Douglas Fouts

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California

Professor Phillip Pace

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California

Professor Man-Tak Shing
Department of Software Engineering
Naval Postgraduate School
Monterey, California

Professor John Powers

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California

LtCol Pete Boerlage
Naval Postgraduate School
Monterey, California

Dr. John A. Montgomery
Naval Research Laboratory
Washington, D.C.

Mr. Alfred A. Di Mattesa
Naval Research Laboratory
Washington, D.C.

Mr. Gregory P. Hrin

Naval Research Laboratory
Washington, D.C.

173

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Mr. Daniel W. Bay
Naval Research Laboratory
Washington, D.C.

Dr. Frank Klemm
Naval Research Laboratory
Washington, D.C.

Mr. Brian W. Edwards
Naval Research Laboratory
Washington, D.C.

Mr. George D. Farmer
Naval Research Laboratory
Washington, D.C.

Dr. Preston W. Grounds
Naval Research Laboratory
Washington, D.C.

Dr. Peter Craig
Office of Naval Research
Arlington, Virginia

Dr Joseph Lawrence
Office of Naval Research
Arlington, Virginia

Mr. James Talley
Office of Naval Research
Arlington, Virginia

Swedish Armed Forces Headquarters
HKV/KRI LED
Stockholm, Sweden

Swedish National Defence College
MTI
Stockholm, Sweden

Swedish Defence Materiel Administration
Stockholm, Sweden

Swedish Defence Research Agency
Linkoping, Sweden

174

	I.INTRODUCTION
	A.DIGITAL IMAGE SYNTHESIZERS
	1.Background
	2.Functionality of the Digital Image Synthesizer

	B.PRINCIPAL CONTRIBUTIONS
	C.THESIS OUTLINE

	II.CAPABILITIES OF VHDL
	A.INTRODUCTION
	1.History of VHDL
	2.Digital Design Using HDL
	3.Logic Synthesis

	B.OVERVIEW OF VHDL CAPABILITIES AND ACTIVE VHDL
	1.VHDL as a Programming Language
	2.Active HDL

	III.SOFTWARE VERIFICATION METHODS
	A.TESTING AND VERIFICATION
	1.Reconvergence

	B.FORMAL VERIFICATION
	1.The Use of Logic
	2.Binary Decision Diagrams and Computational Tree Logic
	a.BDD
	b.CTL

	3.Equivalence Checking
	4.Model Checking
	5.Theorem Proving
	6.Functional Verification
	a.Black-Box Verification
	b.White-Box Verification
	c.Grey-Box Verification

	C.SIMULATION
	D.CHOSEN METHODOLOGY

	IV.VERIFICATION OF HARDWARE DESIGNS
	A.VHDL CODE EXTRACTION
	1.Extraction Guidelines

	B.VHDL CODE MODIFICATION
	1.Naming Conventions
	2.Entity Declaration
	3.Behavior

	C.CREATION OF MODELS
	1.Inverter
	2.Subsequent Models

	D.VERIFICATION OF SINGLE RANGE BIN MODULATOR
	1.Underlying Mathematics

	E.LAYOUT
	F.CONTROL SIGNALS
	G.DRIVER INPUT METHODOLOGY AND EXPECTED OUTPUT
	H.TEST ALGORITHM:
	I.TEST AND RESULTS
	J.VERIFICATION OF 8 RANGE-BIN MODULATOR
	1.Underlying Mathematics
	2.Layout
	3.Additional Control Signals
	4.Driver Input and Test Algorithm
	a.Test Algorithm

	5.Tests and Results
	a.Vector 8A
	b.Vector 8B

	V.VERIFICATION OF 32 RANGE-BIN MODULATOR
	A.CREATION OF 32 RANGE-BIN MODULATOR
	1.Underlying Mathematics
	2.Layout
	3.Additional Control Signals
	4.Driver Input and Test Algorithm

	B.IMPLEMENTATION OF TEST CASES
	C.SIMULATION AND VERIFICATION
	1.Programming of Vector 32A
	2.Result of Vector 32A
	3.Programming of Vector 32B
	4.Result of Vector 32B

	VI.SUMMARY, CONCLUSION AND RECOMMENDATION
	A.SUMMARY AND CONCLUSION
	B.RECOMMENDATION

	APPENDIX A. VHDL IMPLEMENTATION TUTORIAL
	A.CREATING A NEW DESIGN

	APPENDIX B. TEST BENCH GENERATION TUTORIAL
	APPENDIX C. TOP-LEVEL VHDL CODE FOR A 1-BIT ADDER
	APPENDIX D. VHDL CODE FOR THE SINGLE RANGE BIN
	A.TOP LEVEL VHDL CODE
	B.TEST BENCH FOR THE SINGLE RANGE BIN
	C.EXECUTING MACRO FOR THE ONE RANGE-BIN TEST BENCH

	APPENDIX E. VHDL CODE FOR THE 8 RANGE-BIN MODULATOR
	A.TOP LEVEL VHDL CODE
	B.TEST BENCH FOR THE 8 RANGE BIN
	C.EXECUTING MACRO FOR THE 8 RANGE-BIN TEST BENCH

	APPENDIX F. VHDL CODE FOR THE 32 RANGE-BIN MODULATOR
	A.TOP LEVEL VHDL CODE
	B.TEST BENCH FOR THE 32 RANGE BIN MODULATOR
	C.EXECUTING MACRO FOR THE 32 RANGE BIN TEST BENCH

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

